Engineering Solutions

Dr Hari Technical Sales Manager

THE TRUSTED STEEL-FRAMING PARTNER

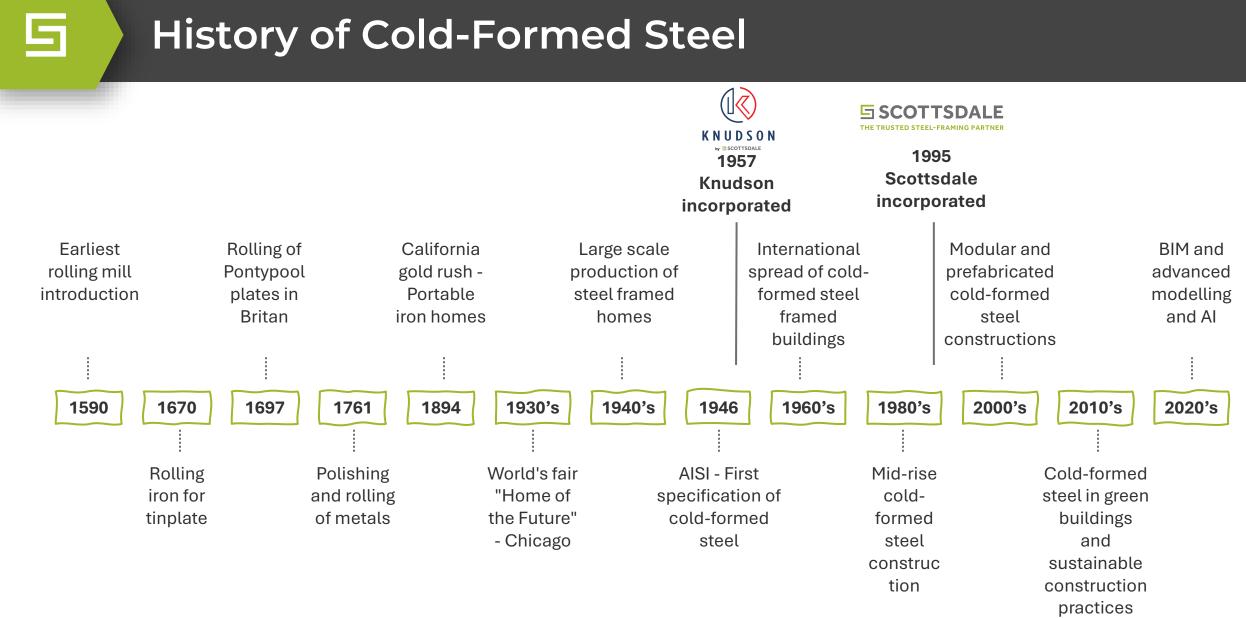
History of cold-formed steel

Current global usage

Potential strength benefits

Behaviour under various temperature conditions

Engineering solutions, research and development


Current and future Engineering software development

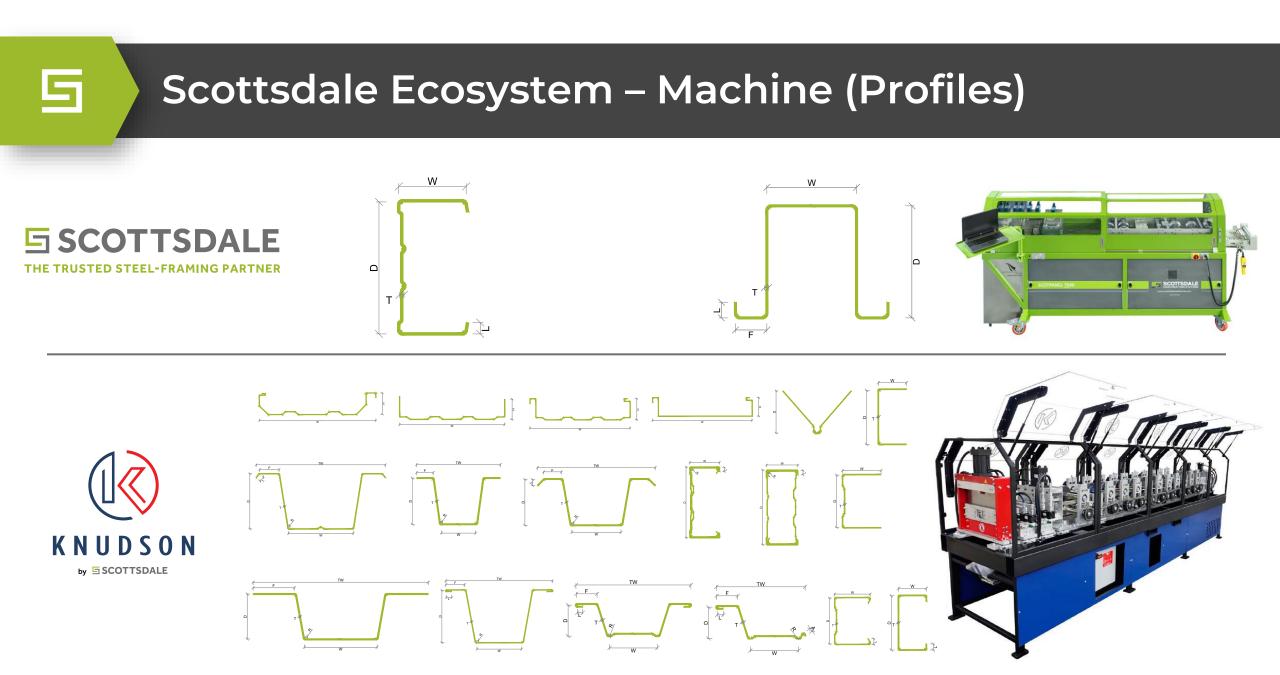
History of Cold-Formed Steel

A brief look into the past and evolution of coldformed steel in buildings

Current Global Usage

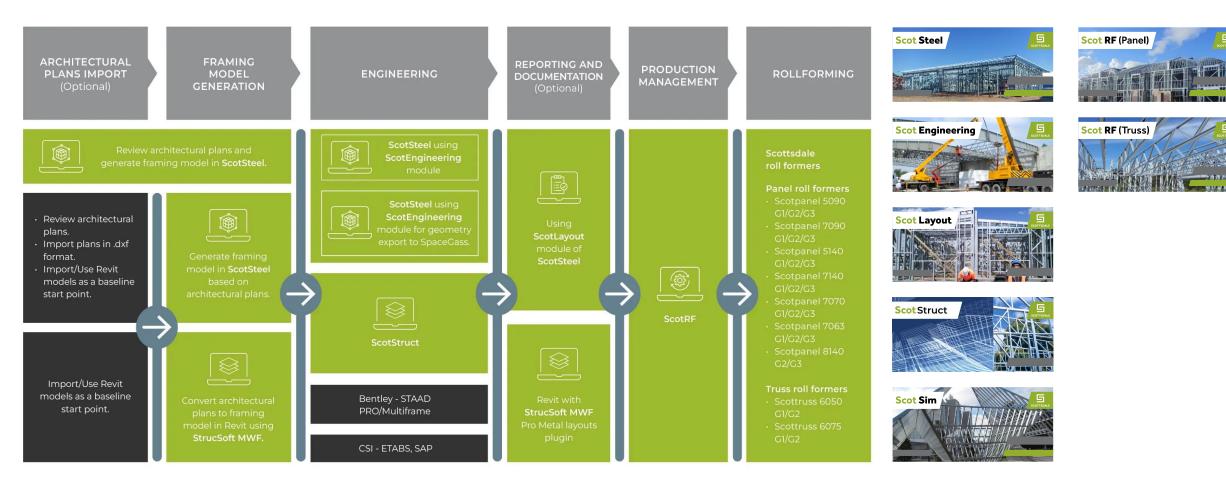
How cold-formed steel is used around the globe with various building types

Global Presence



5 Scottsdale Ecosystem

THE TRUSTED STEEL-FRAMING PARTNER

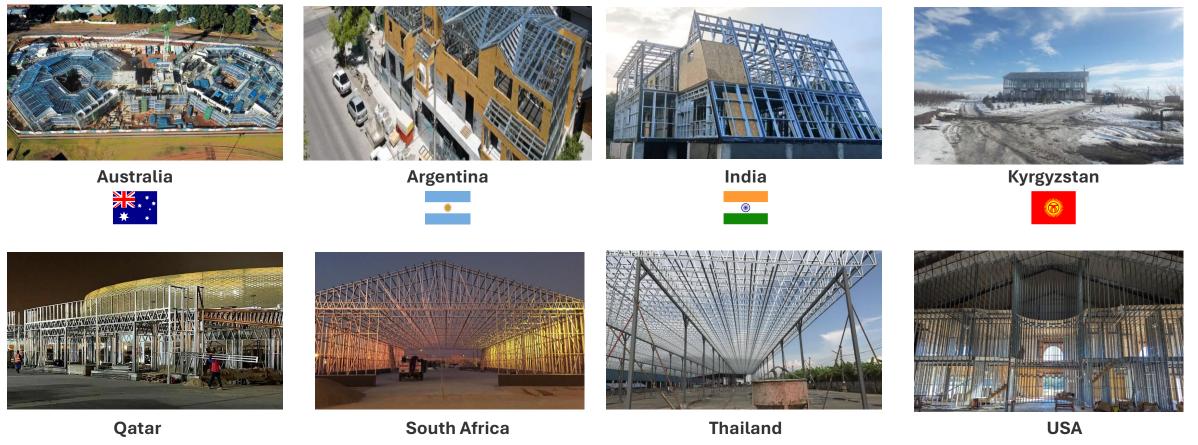


Scottsdale Ecosystem – Software (Scottsdale)

"World-class software solutions for cold-formed steel construction"

5

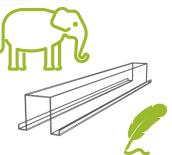
SCOTTSDALE THE TRUSTED STEEL-FRAMING PARTNER


5

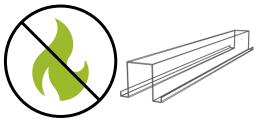
Scottsdale Ecosystem – Software (Knudson)

"Most versatile software solution for all cold-formed steel structures"

Projects Around the Globe



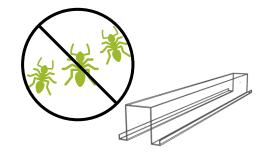
Potential Strength Benefits


Cold-formed steel comparison with other framing elements

Advantages of Cold-Formed Steel

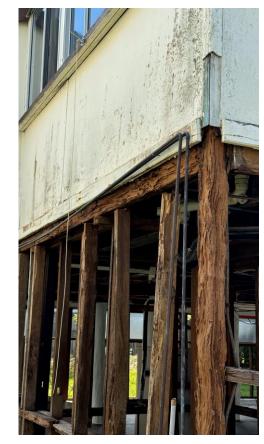
Higher strength to weight ratio

Non combustible


Fast and low cost in mass production

Reduced self-weight resulting in easier handling

Eco friendly as steel is the most recycled material in the world

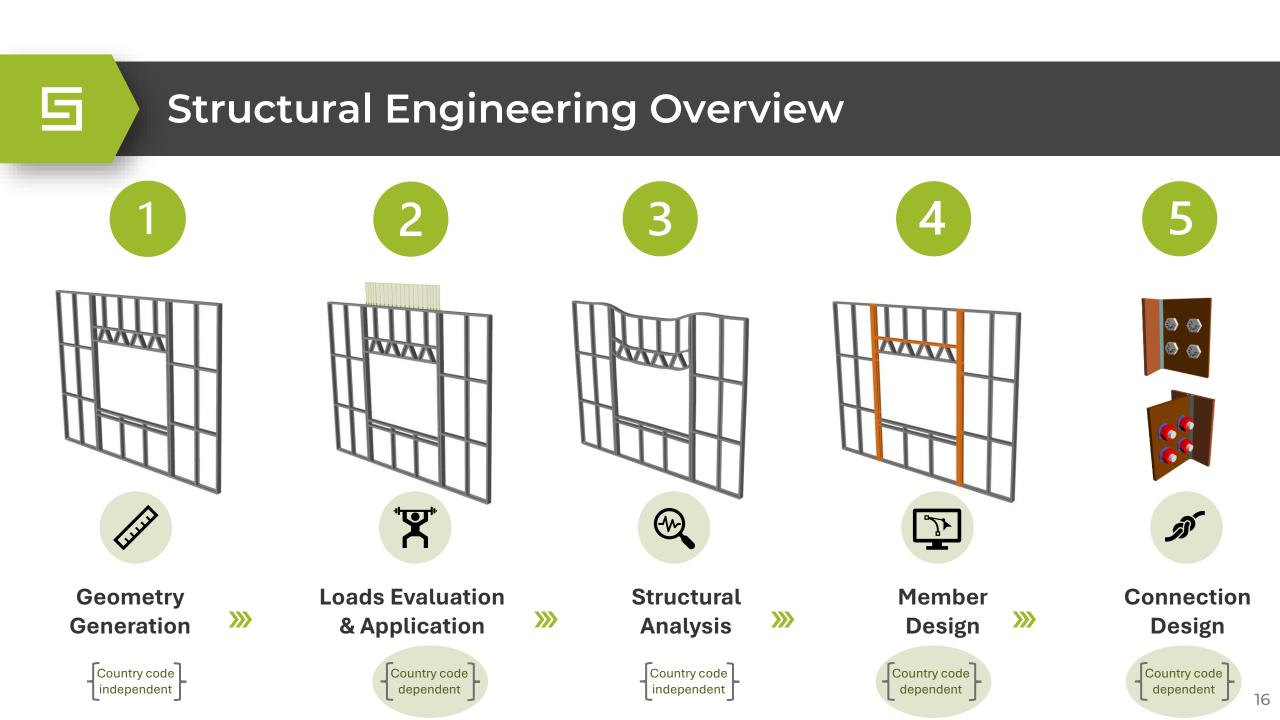


Resistance to termite attacks and weathering

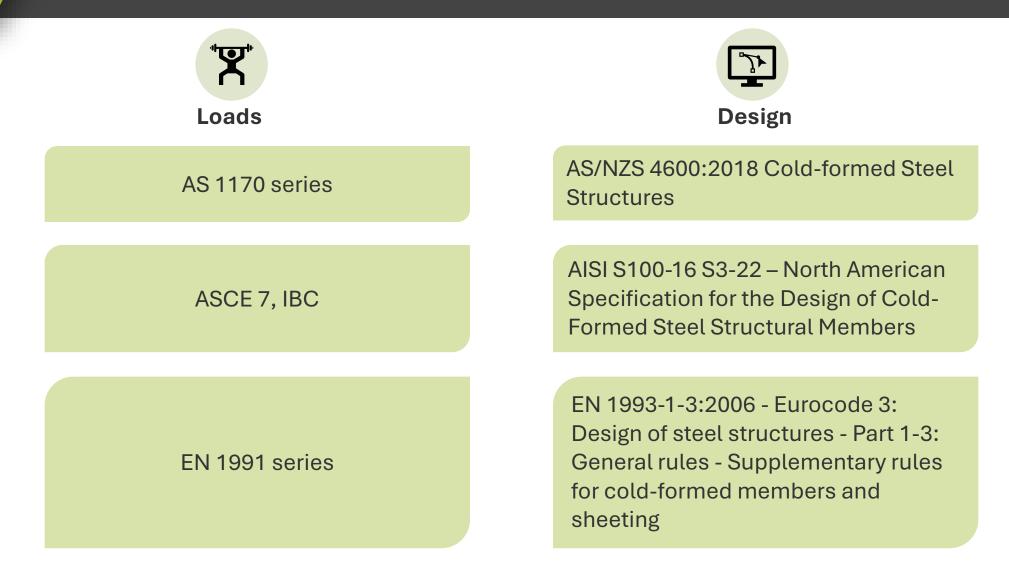
Comparison with Wood

- Termite attack compromising structural integrity
- Hard to get it straight
- Warps due to weather

- Higher dead load but lesser capacity
- Dimensions can vary if not prefabricated
- More labour and equipment on site due to heavy frames – Slower construction time
- Combustible



- Impossible for termites to eat
- Straight structures all the time
- Rigid and no warping due to weather
- Lower dead load but higher capacity
- Millimetre level precision using prefabrication methods
- More labour and equipment on site due to heavy frames – Faster construction time
- Non-combustible

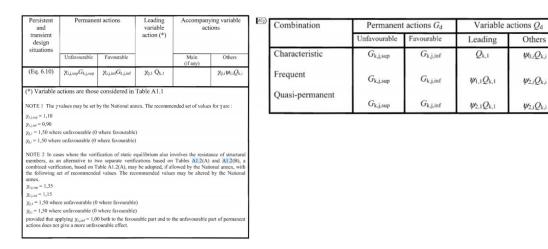


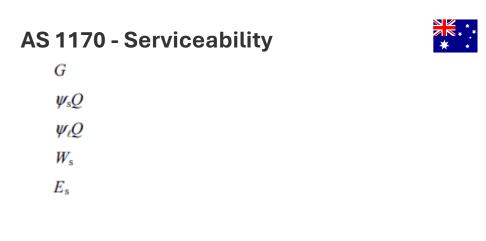
Behaviour Under Ambient Conditions

Cold-formed steel structural behaviour overview

Major Country Codes for Loads and Design

Load Combinations

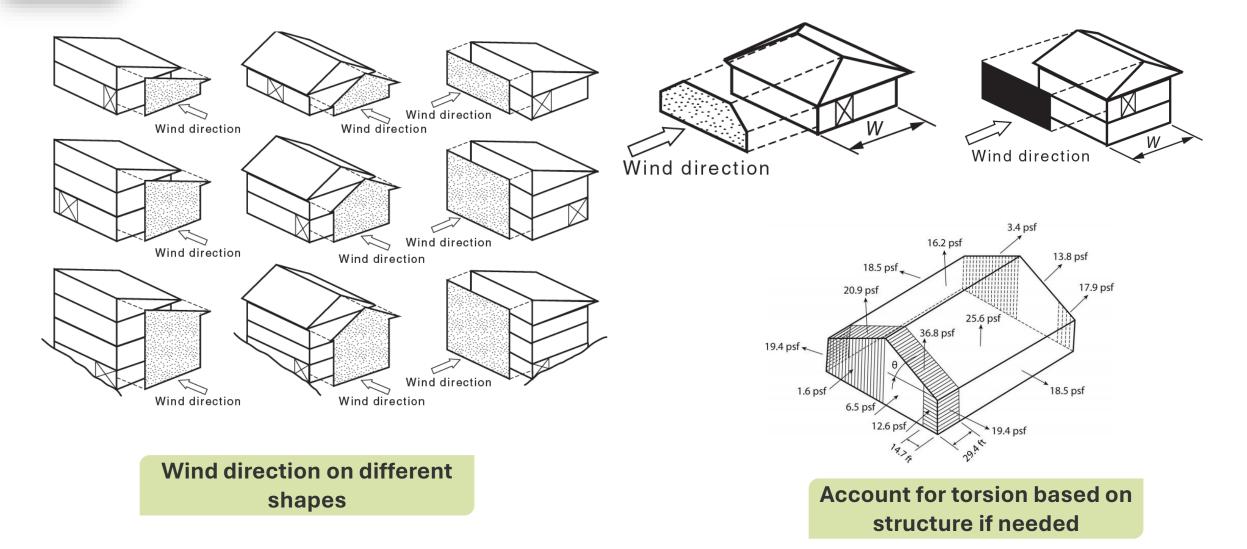

* *** * *


5

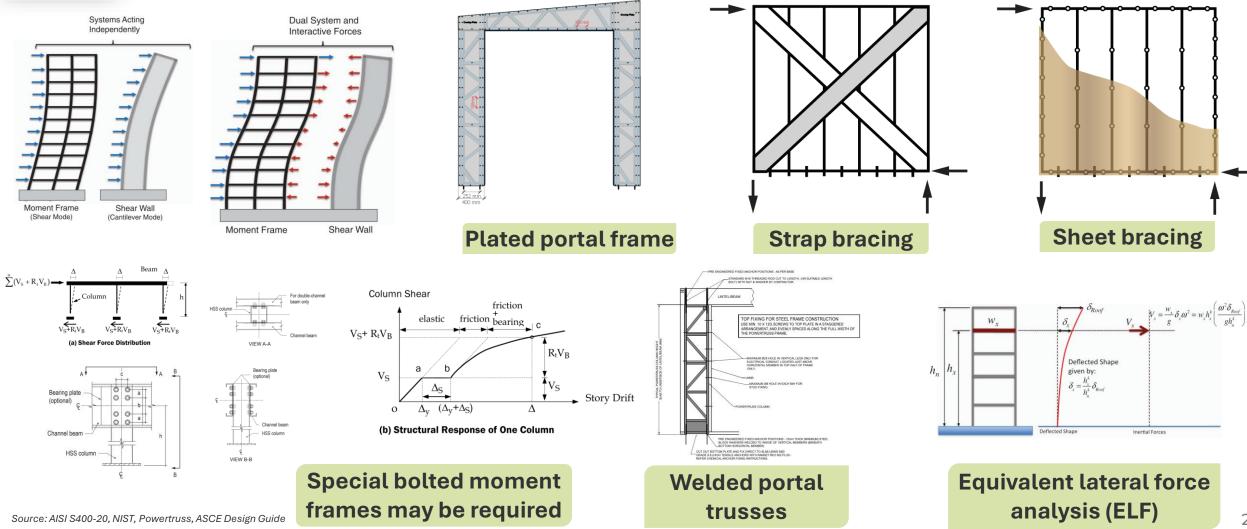
AS 1170 – Strength load combinations

$E_{\rm d} = [1.35G]$	permanent action only (does not apply to prestressing forces)
$E_{\rm d} = [1.2G, 1.5Q]$	permanent and imposed action
$E_{\rm d} = [1.2G, 1.5 \psi_{\ell} Q]$	permanent and long-term imposed action
$E_{\rm d} = [1.2G, W_{\rm u}, \psi_{\rm c}Q]$	permanent, wind and imposed action
$E_{\rm d} = [0.9G, W_{\rm u}]$	permanent and wind action reversal
$E_{\rm d} = [G, E_{\rm u}, \psi_{\rm E}Q]$	permanent, earthquake and imposed action
$E_{\rm d} = [1.2G, S_{\rm u}, \psi_{\rm c}Q]$	permanent action, actions given in Clause 4.2.3 and imposed action

EN 1990 – Strength and service load combinations

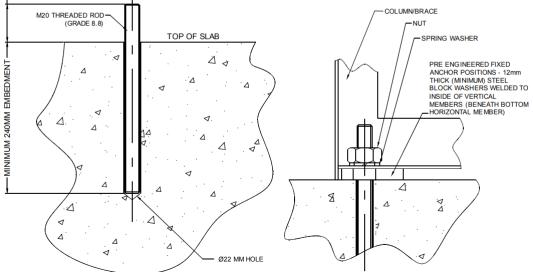


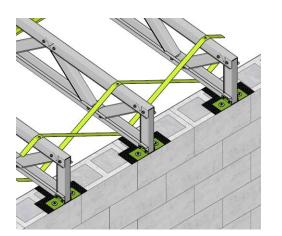
ASCE 7-22 - Basic load combinations



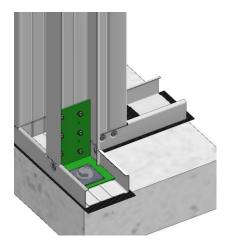

```
1a. D
2a. D + L
3a. D + (L_r \text{ or } 0.7S \text{ or } R)
4a. D + 0.75L + 0.75(L_r \text{ or } 0.7S \text{ or } R)
5a. D + 0.6(W \text{ or } W_T)
6a. D + 0.75L + 0.75(0.6(W \text{ or } W_T)) + 0.75(L_r \text{ or } 0.7S \text{ or } R)
7a. 0.6D + 0.6(W \text{ or } W_T)
```

Wind Behaviour and Design


Seismic Behaviour and Design

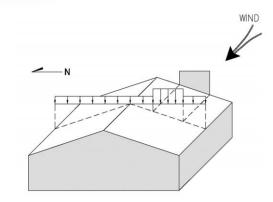

Tie Downs

 Mark hole positions - Minimum 60mm edge distance (face of slab to centre of bolt), & minimum 101mm corner distance (from external corner of slab to centre of bolt).

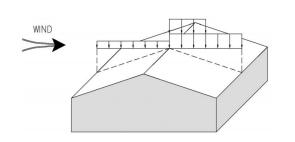

- Drill Ø22mm hole to 240mm minimum depth.
- Remove dust Clean hole thoroughly with brush & air pump twice (refer Ramset Reo502 PLUS installation guide)
- Chemset 20mm Grade 8.8 threaded rod and allow to set before tightening.
- Approved chemical adhesive to suit load capacities is Ramset Reo502 PLUS (refer to chemical adhesive manufacturer's literature).

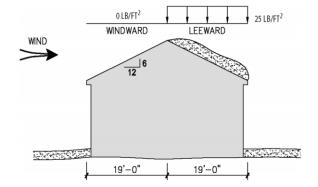
Chemical anchors to resist higher uplifts

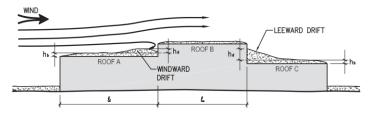
Roof truss to block wall tie down

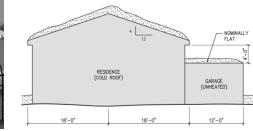


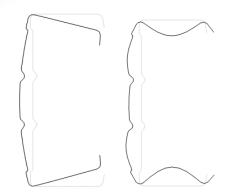
Wall to concrete footing tie down


Anchor design software for cracked concrete


Snow Behaviour and Design


5

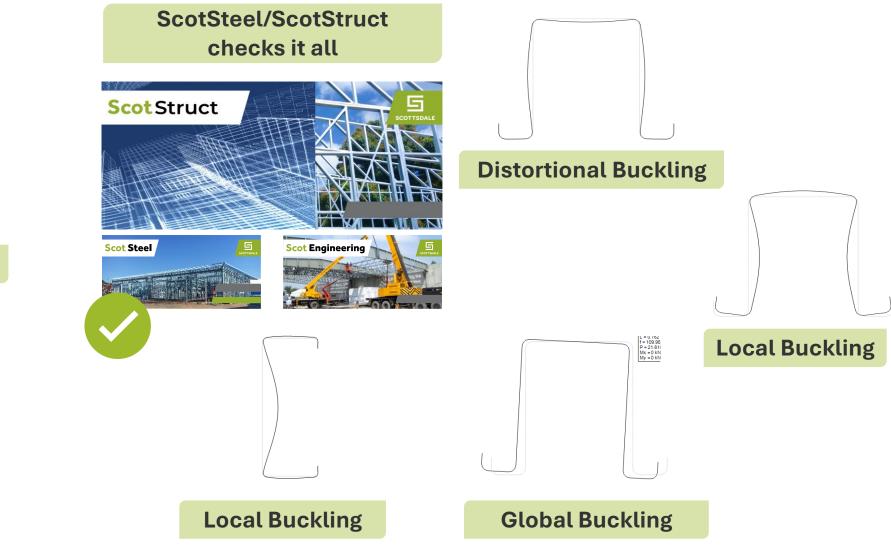


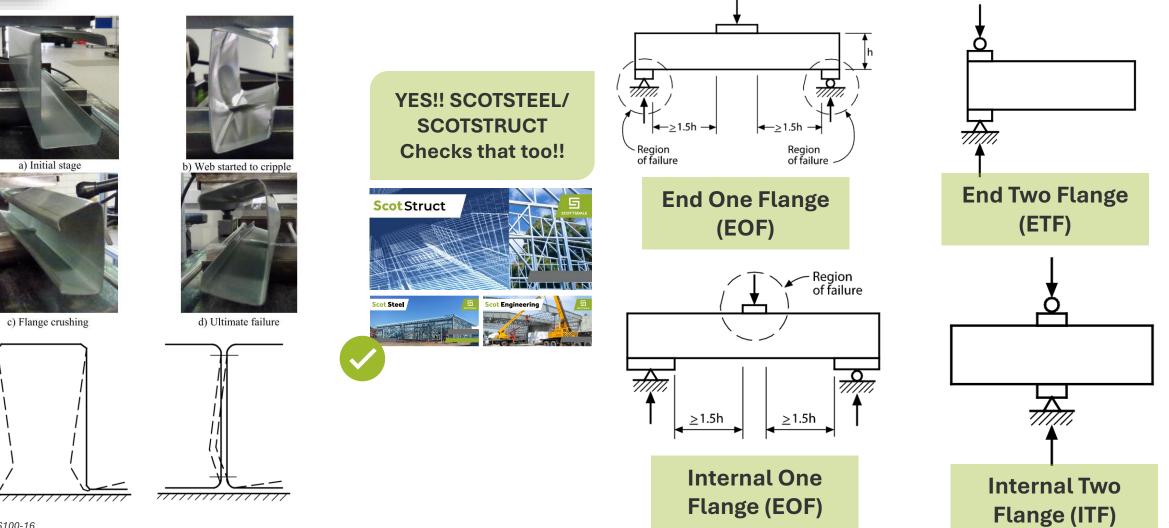


Drift and sliding roof snow load

Partial snow loads

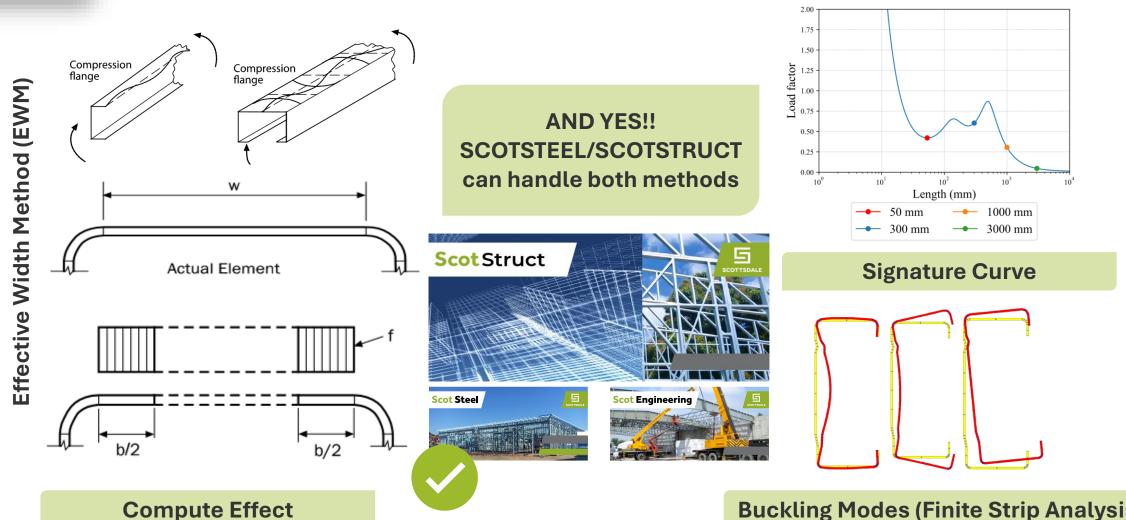
Unbalanced snow loads


Buckling Modes in Cold-Formed Steel


5

Distortional Buckling

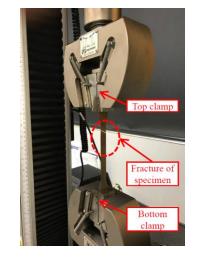
Global Buckling


Web Crippling of Cold-Formed Steel

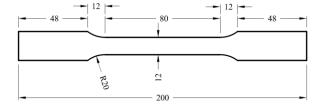
5

Effective Width Method vs Direct Strength Method in **Cold Formed Steel Design**

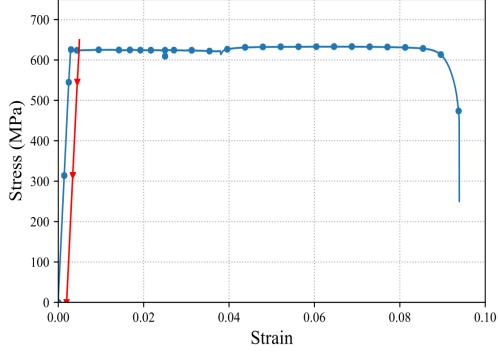
5



Buckling Modes (Finite Strip Analysis)


Direct Strength Method (DSM)

Tensile Coupon Tests and Mill Certificates


"CHECK BEFORE YOU BUY STEEL"

5

Typical tensile coupon test

TEST (ER	TIFIC	ATE			Ŵ	NEV Stei	AV ZN EL	ealai	40		Page 1 of 1 te No. : TC308151 ion Date: 08/07/14
Customer:		Tray-D	ec NZ L	td			s	Supplie	r:	New Zealand Stee	I Limited	
Cust Order	No:						S		Inder No:	Glenbrook, South Private Bag 92121 Auckland, NEW ZI 1042982 Supplier MWS 04/09/2014		
PRODUCT:		0.95mm AS1397(x 960mm 2011) G5	x Coil 0 50 Z275		SED WIDE C	OIL				CERTIFI	INSPECTION: CATION: Supplier
IEWS C	OVE	RED B			IFICA	IE .		eat	0	ntered Dimensions	Tested	
Unit Identifies						No	Ĭ	(mm)	Unit			
G936413 G936414 G936415						923	3115	960X0.95	SXCOIL	G936404		
G936404 G936405 G936406					923	3359	960X0.95	SXCOIL	G936404			
G936407 G936408 G936409 G936410 G936411 G936412					923	3360	960X0.95XCOIL		G936404			
CHEMICA Percentage of of Heat / Unit No				(L=Cast, I Mn	Product	-S=Soluble, -1 S	'≃Total, CF	F=Chem	ical Formula	a, m+Min, x=Max)		

MECHANICAL TESTING

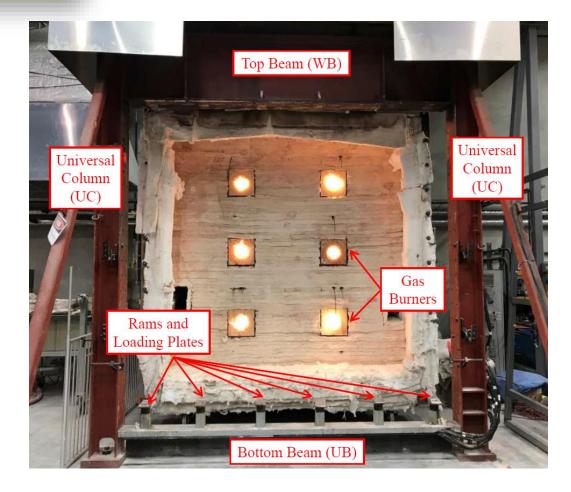
ensile								
Tested Unit	Heat No	ReL MPa	Rm MPa	Lo	ELONGN %			
G936404	923359	690	730	50	7			

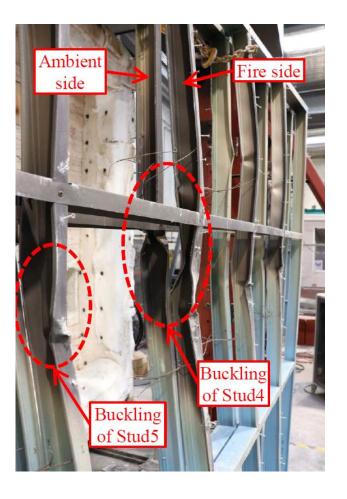
COMMENTS

-Hest analyzed from Iada -. Results relate to test on a representative sample of the items covered in this test certificate. — This certificate may not be reproduced recept in the 1-HZ Steet, Channel Laboratory IAAX Concertitation Namer 2010, ICTP M Claudi Biner. - NZ Steet IAAbnenial Laboratory IAAX IAAX Concertitation Namber 3556, Approved Signatory MS Schalt Bester. - NZ Steet IAAbnenial Namer 2010, International Accentitation Name Zabarro (NATA), as approved to the International Laboratory Ancertation Cooperation Muscle Reception Reserved. The ID Reference. International Accentitation Namer Zabarro (NATA), as approved to the International Laboratory Accentitation Reception Reserved. The ID Reference. Name ID Reference. Nam

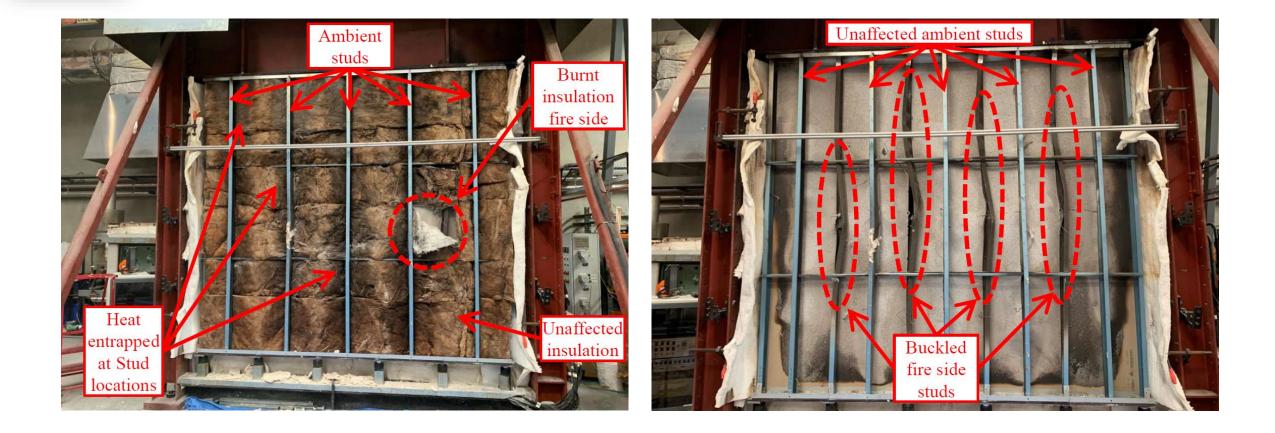
MECHANICAL COMMENTS MEASUREMENT ABBR Rel.=Lower Yield Strength; Lo=Original Gauge Length; Rm=Maximum (Ultimate) Tensile Strength (UTS

I certify that the original records of the company show that the item(s) referred to on this certificate conform to the specification as stated.
ANDREW MACKAY - APPROVED SIGNATORY


Typical mill certificate


Behaviour Under Extreme Conditions

Cold-formed steel structural behaviour under various temperature loading conditions

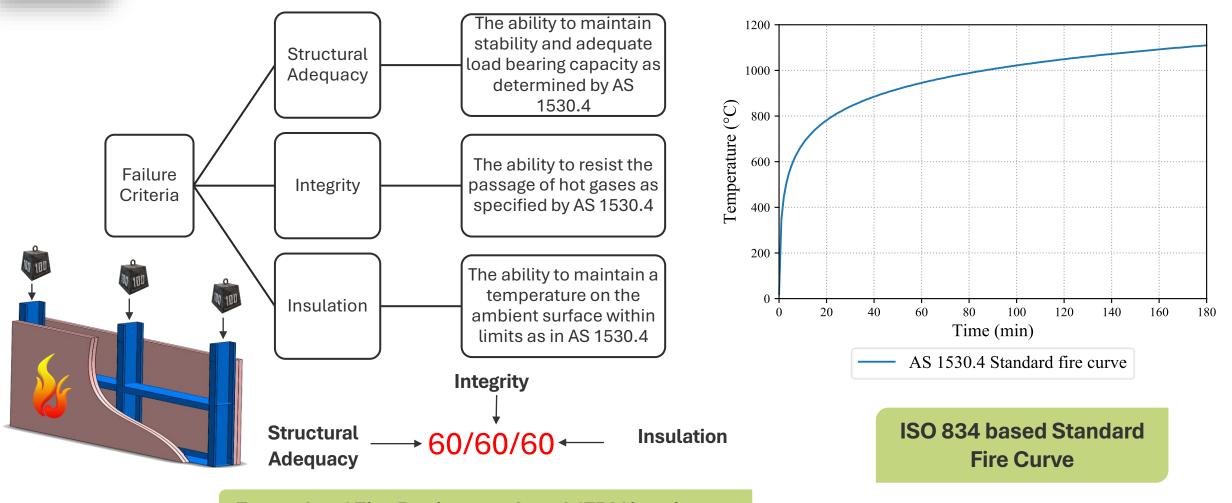

Full Scale Fire Tests – Walls (SCOTPANEL)

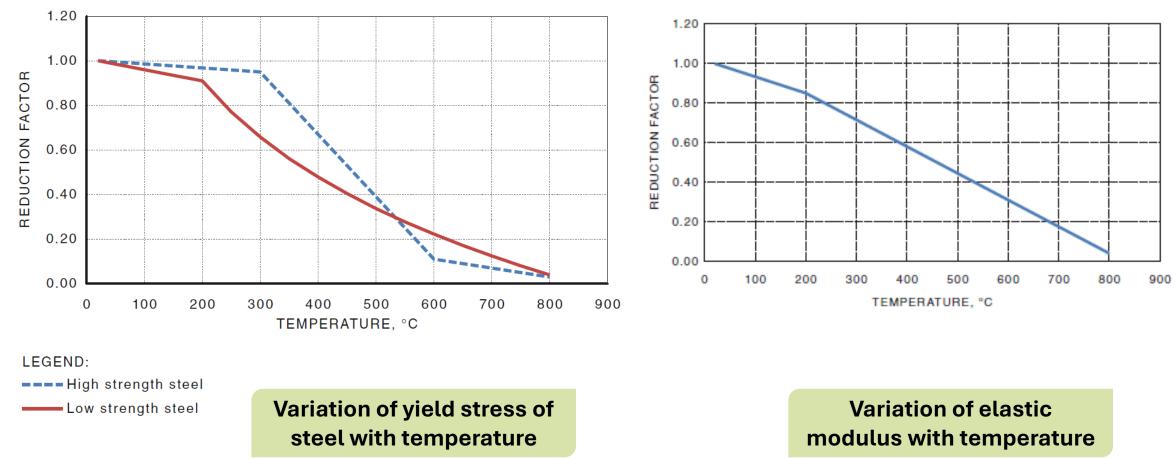
Heat Entrapment – Effect of Insulation (SCOTPANEL)

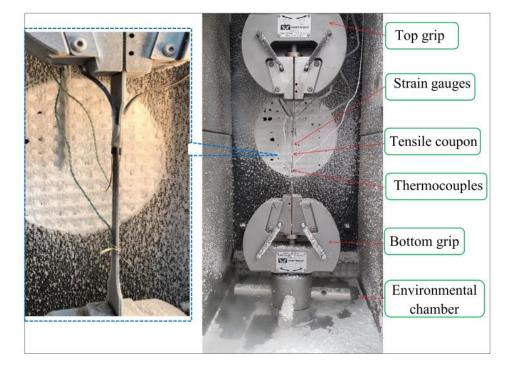
Floor Fire Tests (SCOTTRUSS)

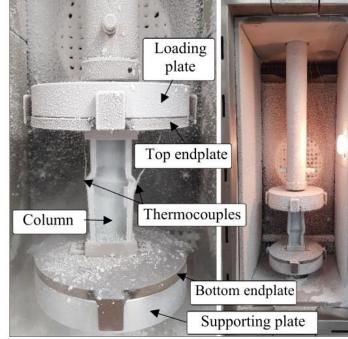
Buckling of top chord, bottom chord and web members

In the Event of a Fire




Fire Resistance Level (FRL)


Example of Fire Resistance Level (FRL)in minutes


Fire Design - Behaviour

"Ensure these reductions are included during fire design"

Design Under Sub Zero Conditions

Temp. (°C)	Specimen number	G550 0.55 mm	G300 0.55 mm	G300 0.8 mm
20	1	23.80	16.93	18.47
20	2	24.32	16.82	18.25
-10	1	25.34	17.89	-
	2	24.96	18.42	-
-30	1	25.64	19.28	21.08
	2	25.80	19.69	21.03
-50	1	26.29	21.55	23.57
	2	26.02	21.37	24.08
-70	1	28.34	23.81	26.09
	2	27.45	23.81	-

Typical tensile coupon test

Short column compression tests

Short column compression test results

"No reduction in capacities at sub-zero temperatures"

Engineering Solutions – Research and Development

Analysis and design procedures with latest research and developments

K-bracing

30-mm brace

150-mm brace

Connection Tests

"Capacities included in ScotSteel engineering calculations"

Hat section roof truss connection tests

Rivet connection

Nail pull out

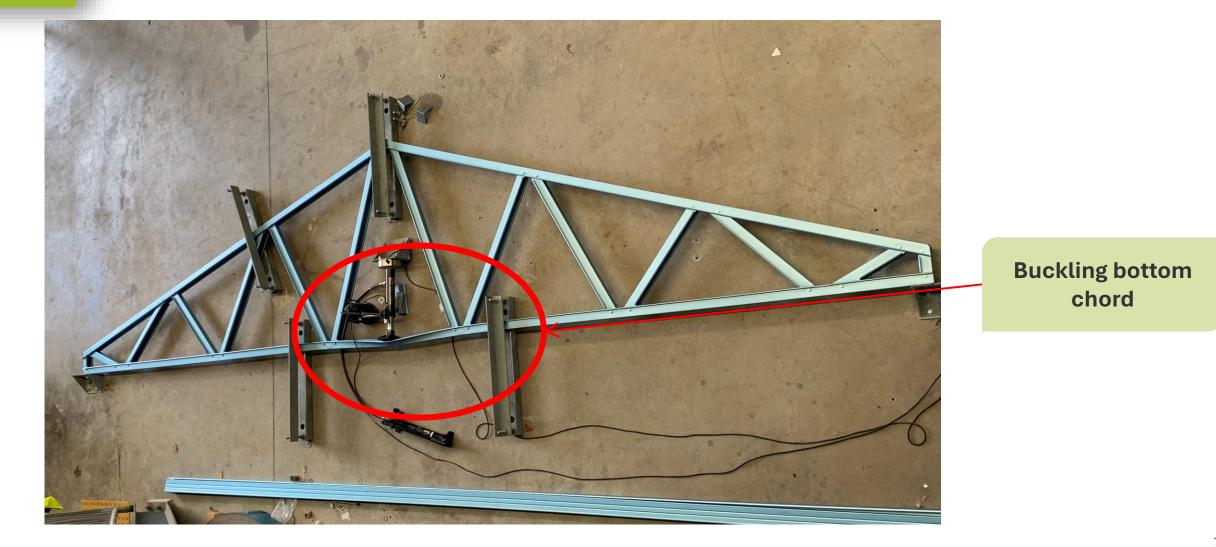
Bolt tension

Bolt web connection

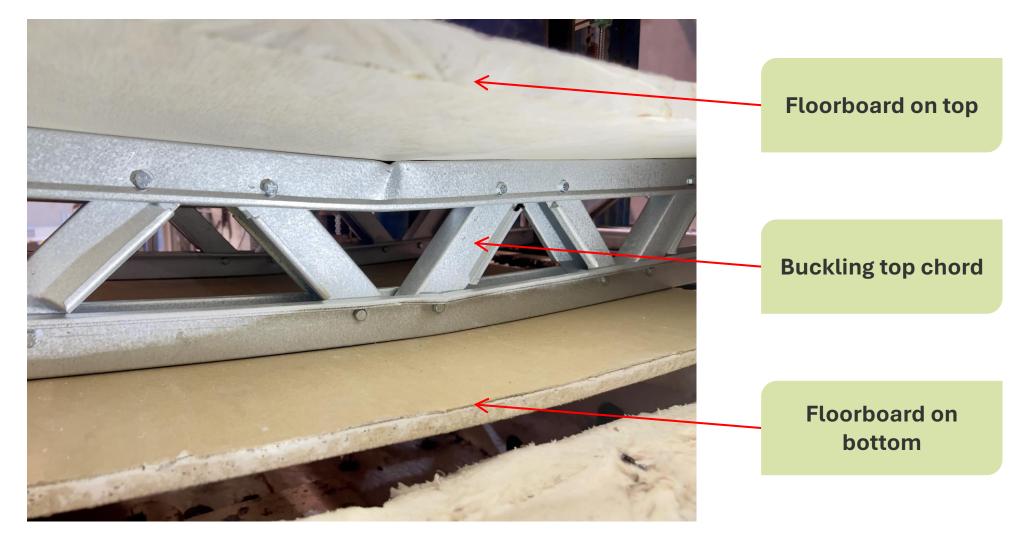
Lintel Tests

No plating

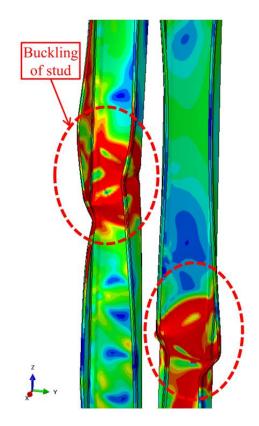
Double plating



Single plating

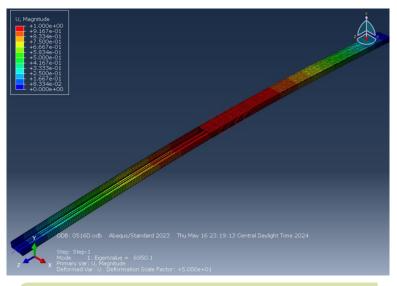


Rivet failure

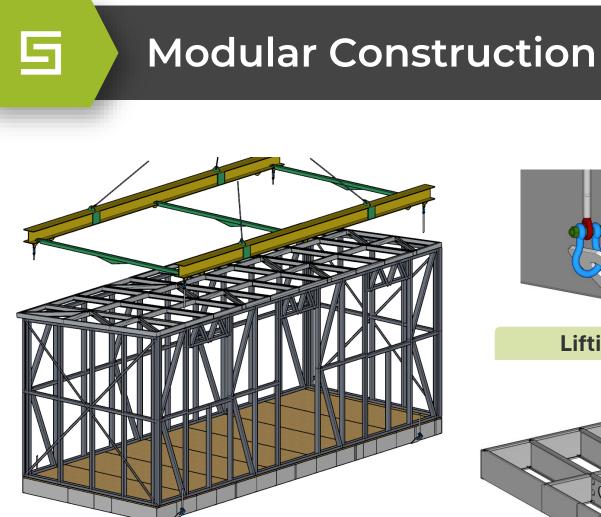

Truss Testing – Hat Section (SCOTTRUSS)

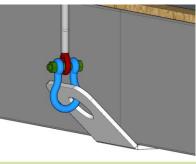
Full Scale Floor Truss Testing (SCOTTRUSS)

Advanced Finite Element Analysis

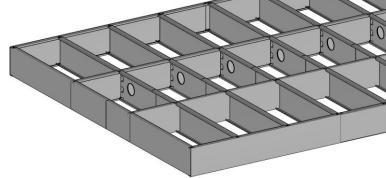


5

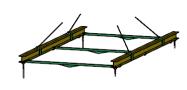

Buckling behaviour of C-section members (SCOTPANEL)

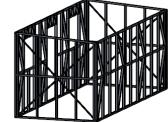


Buckling behaviour of Hat section members (SCOTTRUSS)



Buckling behaviour of FE24 (FRAMEEXTEND24)



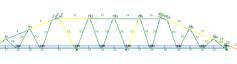

Lifting lugs

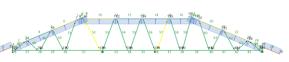
Components within a lift

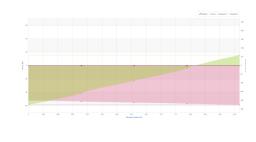
Modular lifting set-up

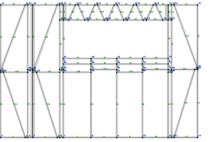
42

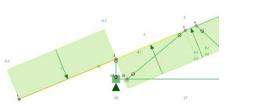
Current and Future Engineering Software Development


Software tools and automation for cold-formed steel structures









3


5

Expert Court and that										
Adura Una										
and they I Continue to a		10,000	· looston Ri	President at \$100	Translation # (rd)	Promobilition 2 (1r)	Reference in Links	Automotive Village	management 2 (desp)	to band?
			a 2.64				A state	1-000	A DOC	4400
8.0			1 1.0				1.00	1.000	1.000	-0007
B.C	5		5 1.5				1.00	1.000	1.000	-0007
8.0							1.000	1.000	8.800	
8.4			2 8.54				1.000	1.000	1.000	4441
B.C.			4 2.63				0.300	6.000	0.000	-0081
B.C.			1 1.5				0.000	6.000	4.880	-0.051
8.4			1 8.00		12 6/		0.000	6.000	8.800	4000
8.<			2 8.41				0.000	6-000	8.800	4.009
8.4	9		3 1.00				0.000	6-000	0.000	4000
B.C	3		6 2.79				0.000	6.000	0.000	-0.009
8.0	9		5 3.70	0 00	12 EI		9.000	6-000	9.800	4009
8.<			1 8.00				0.000	0.000	8.800	-0.082
8.4							0.000	6-000	8.800	4440
B.<	2		3 1.84				0.000	6.000	0.000	-0.092
BLC .			a 2.N	3 -0.3	40 40	60	0.000	6.000	0.000	0.000
8.4			5 3.60	1 -0.0	42 -42		0.000	6.000	8.000	-0.082
			8.00		a 4.	6.8	0.000	6-000	0.000	4-009
8.4										

Design bending moment y-axis (My)
Design shear force x-axis (Vx)
Design shear force y-axis (Vy)
Design concentrated load/reaction (R)
Combined tension and bending - nominal member moment capacity - Eq. 3.5.

eb	0.421

	Critical Check
	Combined Compression and Bending Eq. 3.5.1(3)
	Distortional buckling bending check - Eq. 3.3.1 (2) (x-axis)
I	Combined Compression and Bending Eq. 3.5.1(1)

nbined Forces	Ĩ.	5
iber	25	
on Name	6050-G550-0.85	
aced member length restricting distortional buckling (Lm)	2.176 ft	
aced member length about x-axis (Lx)	1.958 ft	
aced member length about y-axis (Ly)	2.393 ft	
aced member length for twisting (Lt)	1.958 ft	
load alternative applied	No	
Combination	UL5-071	
on	1	
zn axial force (N)	-158.381 lb	
gn bending moment x-axis (Mx)	-5083.858 lb-in	
n bending moment y-axis (My)	0.000 lb-in	
n shear force x-axis (Vx)	0.000 lb	
n shear force y-axis (Vy)	382.366 lb	
n concentrated load/reaction (R)	0.000 lb	
bined tension and bending - nominal member moment capacity - Eq. 3.5	0.835	
bined tension and bending - nominal section moment capacity - Eq. 3.5.2(2)	0.594	

Joint/Connection Checks Member 🔺 Section Node A Force (lb) Capacity (lb)

ß

18 6050-G550-0.85 19 155.329 1764.75	Load Con	bination: ULS-001			
	8	6050-G550-0.85	8	104.294	1764.751
26 6050-G550-0.85 27 0.000 1764.75	18	6050-G550-0.85	19	155.329	1764.751
	26	6050-G550-0.85	27	0.000	1764.751
44 6050-G550-0.85 46 0.000 1764.75	44	6050-G550-0.85	46	0.000	1764.751

Ratio 🕈	Joint	Joint Code	Status
0.059	Bolt no spacer	В	Pass
0.088	Bolt no spacer	В	Pass
0.000	Bolt no spacer	В	Pass

Geometry Generation

፞ጞ

Structural Analysis

Member Design

J

Connection Design

Engineering Automation Roadmap

ScotStruct - BETA				
	Actions		Move Up	
Wall Piers	Wall Segment Pro			Wall Pier Display
Q. Search	Name:	Level 1		
WP 1 Level 5	Use Wall Pier Segm			
Level 4	Level	1		
Level 3	Wall Height:	8		
Level 1	Tributary Width:	8		
	Section:	90C37-114		
	Material:			
	Stud Spacing:			
	Stud Spacing.			
	Connection Type:	2 Rivets + 2 Tek		
		Exterior walls with plaster or stucco finishes		
	Construction Type:			
	Max. Nog Spacing:			
	Number of Nogs:			
	Sheathing Type:	Gypsum sheathing with 1/2 inch thickness and No. 6 screws	\sim	
	Sheathing Side:	Both sides (double-sided)	\sim	
	Fixing Spacing:			
	Is Exterior Wall:			
	End Bearing:			
	Support Type:	Floor	~	
	Dead Load:	20	psf	
*	Live Load:	40	psf	
0	Wind Pressure:	32	psf	
3				
E				
0				

ScotStruct - Bearing wall module shown

5

- More modules to the ScotStruct software
- Tight integration amongst all modules
- Integration with ScotSteel and other standalone application
- Import and export support for commonly used engineering formats for easier data transfer
 - DWG
 - DXF
 - IFC
- One click **PDF reports** for engineering sign off for all modules
- Whole cold-formed steel building design with state-of-the-art **DSM** methodology
- Desing for complex configurations and builtup sections

Design for Complex Built Up Sections (Upcoming)

5

Composite columns

EWM/DSM based results

Member Check - A		Check - AISI	S100-16/S	3-22, US, LR	FD		
		pination: 1.2					
		arameters at 3					
	Lx	3.2000 m	Ly	1.6000 m	Lt	1.6000	m
	Kx	1.0000	Ку	1.0000	Kt	1.0000	
		B2BBoxed.cfs	-				
	Material Type: A653 SS				э		
	Cbx	1.2988	Cby	2.0833	ex	0.0000	mm
	Cmx	1.0000	Cmy	1.0000	ey	0.0000	mm
	Braced Fl	Lange: None	kφ	0 kN			
	Red. Fact	tor, R: 0	Lm	3.2000 m			
	Loads:	Р	Mx	Vy	Му	Vx	
		(kN)	(kN-m)	(kN)	(kN-m)	(kN)	
	Total	6.832	-0.7471	0.000	0.0000	0.000	
	Applied	6.832	-0.7673	0.000	0.0000	0.000	
	Strength	82.893	5.1998	52.044	2.7707	49.660	
	Interacti	ion Equations					
	Eq. H1.2-	-1 (P, Mx, I	My) 0.082 ⋅	+ 0.148 + 0.00	00 = 0.230	<= 1.0	
	Eq. H2-1			t(0.021 + 0.00			
	Eq. H2-1	(My,)	Vx) Sqr	t(0.000 + 0.00	00)= 0.000	<= 1.0	
	С	Beams (•	Columns	Spacing	2ft		•
Span	3.2	2 m	•	Dead Load	240 lb/	ft	-
					-		_
Spans	1		•	Live Load	480 lb/	ft	•
Bracin	g Mi	d-Point	•	Wind Load	20 psf		-

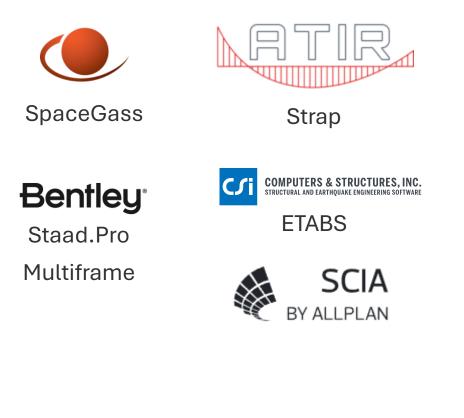
Example column usage engineering results for 6 storey

Composite chord members

Other Modelling and Design Tools

revolutio

5


CHECKWIND

MECAWIND

Custom spreadsheets

Wind generation tools

CFS by RSG

SHAPE-THIN

General purpose

modelling tools

Cold-formed steel design tools

SCOTTSDALE

THE TRUSTED STEEL-FRAMING PARTNER

End-to-End Steel Framing Solution

Your trusted steel framing partner with a complete ecosystem that integrates CAD, advanced engineering, detailing, and roll-forming for streamlined construction.

Versatile Roll formers for Diverse Needs:

Precision roll forming equipment tailored for truss fabrication, modular builds, commercial framing, and beyond.

Optimized for Local Production

Low-cost, efficient roll formers designed for small teams, ideal for on-site light gauge steel fabrication.

High-Tech, Accessible Automation:

Advanced yet affordable steel framing technology with financing options, ideal for businesses of all sizes.

ASSOCIATION OF THE WALL AND CEILING

Australia: Unit 4, 5 Henry Street Loganholme, Queensland 4129

New Zealand: 17 Cadbury Road Onekawa, Napier 4110

+ 1 (888) 406-2080 | +61 1300 671 345 sales@scottsdalesteelframes.com

www.scottsdalesteelframes.com

THANK YOU