

# **Compliance Document for Scottsdale Self- Certification (AU Trusses) - V1.2**

## **Self-Certification**



## Table of Contents

|                                          |    |
|------------------------------------------|----|
| Introduction.....                        | 3  |
| General Information .....                | 4  |
| Software Details.....                    | 4  |
| Organisation Details.....                | 4  |
| Scope and Limitations.....               | 4  |
| Scope .....                              | 4  |
| Limitations .....                        | 5  |
| User Qualification.....                  | 9  |
| History of Revisions/Updating .....      | 10 |
| Software Features.....                   | 11 |
| Referenced Documents.....                | 11 |
| NCC references.....                      | 11 |
| Other references.....                    | 11 |
| Inputs.....                              | 11 |
| Loads.....                               | 11 |
| Load combinations.....                   | 15 |
| Analysis and Design.....                 | 18 |
| Load application .....                   | 18 |
| Member section details .....             | 19 |
| Structural analysis.....                 | 22 |
| Design .....                             | 22 |
| Options for structural detail input..... | 23 |
| Outputs.....                             | 30 |
| Software Quality Assurance .....         | 40 |
| Software QA requirements.....            | 40 |
| Engineering QA.....                      | 40 |
| Member Designs.....                      | 41 |

# Introduction

The Compliance Document for Scottsdale Self-Certification (AU Trusses) consists of this Summary and two other documents:

- [The Installation Manual \(Construction\)](#), and
- [The Self-Certification User Manual](#)

Both documents are available for registered users of the [Scottdale Knowledge Base](#).

The Compliance Document for Scottsdale Self-Certification (AU Trusses) (this document) can be found on the Scottsdale Australia website at the following location:

<https://www.scottdalesteelframes.com/assets/entries/self-certification-compliance-document.pdf>

# General Information

## Software Details

The following applications/modules provide the Scottsdale Self-Certification (AU Trusses) functionality and are incorporated in **Release 25.12.3012.1** of the Scottsdale Software (Release Date: **16th December 2025**).

*Note: Scottsdale Self-Certification (AU Trusses) consists of specific functionality/modules/sub-components within the wider Scottsdale Software suite, and is provided by multiple applications (listed below)*

| Application     | Executable                                 | Version Number  | Description                                                                          |
|-----------------|--------------------------------------------|-----------------|--------------------------------------------------------------------------------------|
| N/A             | Scottsdale Self-Certification (AU Trusses) | 1.1             | The Self-Certification functionality version.                                        |
| ScotSteel       | SCSDesign.exe                              | 25.12.3012.4001 | ScotSteel is the complete design software package.                                   |
| ScotEnvironment | SCSEnviro_SC.exe                           | 25.12.3012.2122 | Engineering environment configuration software                                       |
| ScotEngineering | SCSEngineering.exe                         | 25.12.3012.1142 | Structural analysis, load generation and member checking for the Australian Standard |

## Organisation Details

The **Scottsdale Self-Certification (AU Trusses)** functionality is part of the Scottsdale Software Suite, which is produced and distributed by:

Scottsdale Australia Pty Ltd  
Unit 4, 5 Henry Street  
Loganholme QLD 4129  
Australia

## Scope and Limitations

### Scope

Cold-formed steel trusses using Top Hat and/or C-section for roof and floor.

# Limitations

1) Geometrical limits of the buildings must conform to limitations (a) to (e) of the ABCB Protocol for Structural Software as shown below:

- a) The average roof height must be less than 7.25m
- b) The building width, including roofed verandas, must be less than 16.0 m
- c) The building length must be less than 5 times the building width
- d) The roof pitch must not exceed 35°

The software checks for all the geometric limits and does not allow proceeding with self-certifications if any of them exceed the limit.

The programme has validation on the building width, length, height, and the roof pitch dimensions. If these limits are exceeded, the software will not allow the user to proceed. It gives the user a warning message as shown in Figure 1. If the dimensions are correct based on the building plan, the user must exit the environment and select the non-self-certification window as shown in Figure 2.



The screenshot shows the 'Self Cert 3 - Unified Environments (Self Certification)' software window. The 'Template' tab is selected. The 'Building Dimensions' tab is active. The 'Building Width' field contains '17000' with a warning icon and '(mm)' unit. A tooltip 'Building width must be between 1 and 16000 mm' is displayed. Other fields include 'Building Length' (empty), 'Average Roof Height' (empty), 'Min. Roof Pitch' (empty), 'Max. Roof Pitch' (empty), 'Shape of Roof' (empty), and 'Modular Build' (unchecked). At the bottom is a 'Generate Report and Close' button.

Figure 1 – Self-certification limit validation

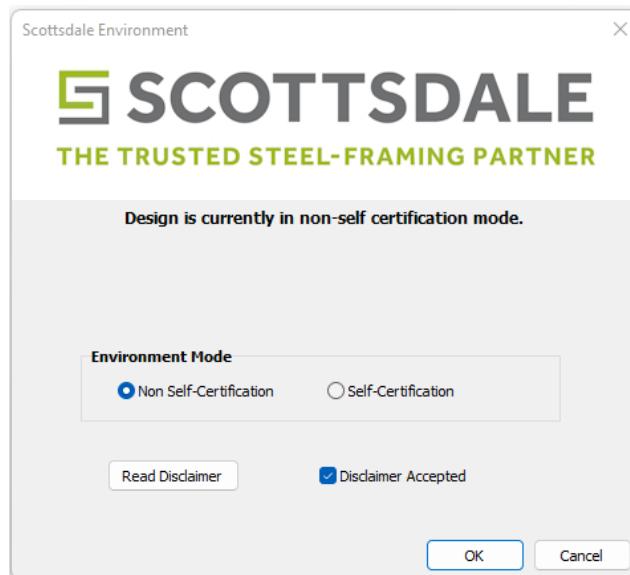



Figure 2 - Non-self-certification selection window

As explained above, if the user enters dimensions outside of the limits, the software will not proceed or create the report. The screenshots below show each limitation with the warning message. Refer to Figures 3 to 6 below.

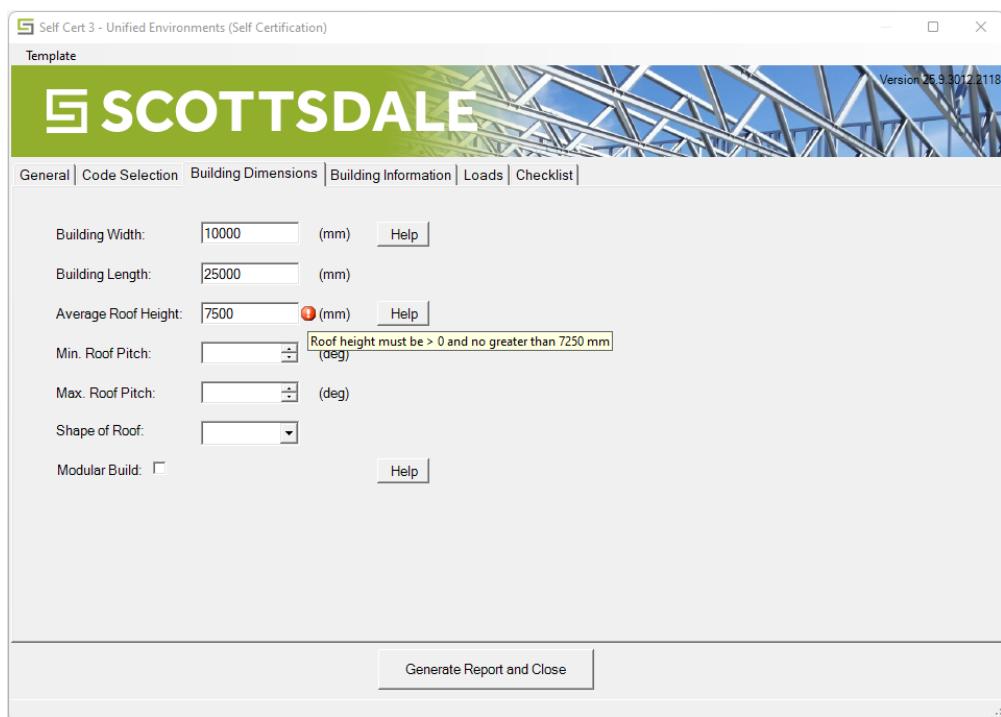



Figure 3 - Building width validation



The screenshot shows the 'Building Dimensions' tab of the Scottsdale Self-Certification software. The 'Building Length' field contains the value '60000'. A validation message 'Building length must be greater than 1 and less than 5x building width' is displayed in a tooltip, indicating that the value is invalid.

Figure 4 - Building length validation



The screenshot shows the 'Building Dimensions' tab of the Scottsdale Self-Certification software. The 'Average Roof Height' field contains the value '7500'. A validation message 'Roof height must be > 0 and no greater than 7250 mm' is displayed in a tooltip, indicating that the value is invalid.

Figure 5 - Building height validation

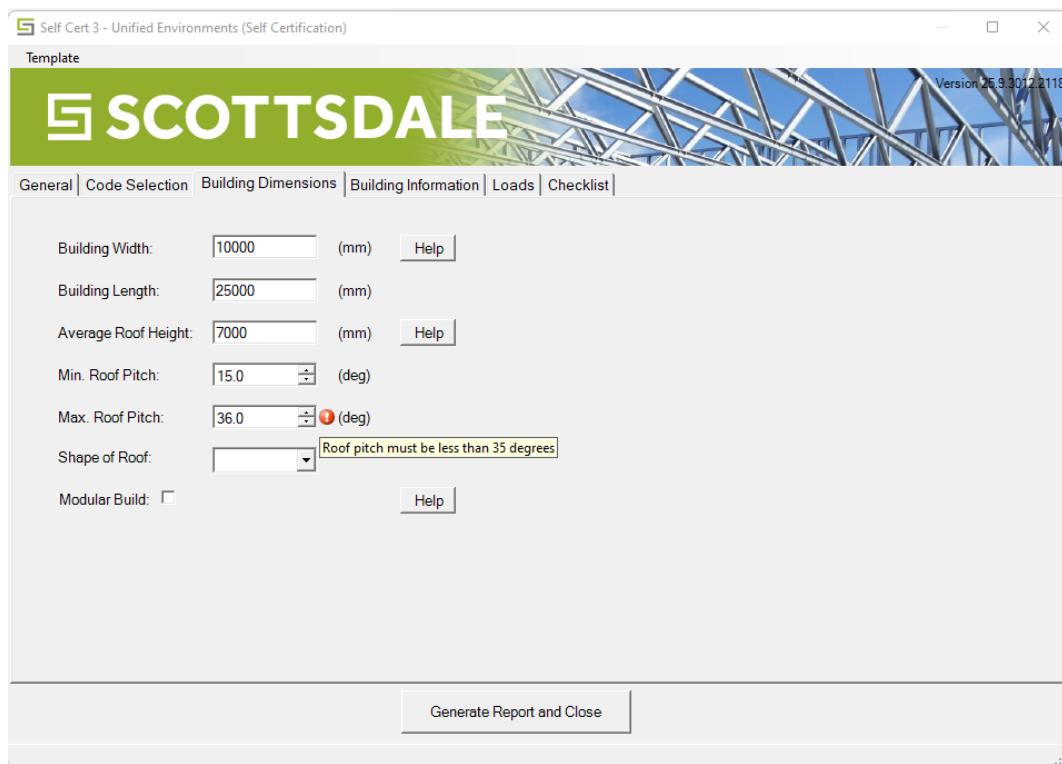



Figure 6 - Roof angle validation

- 2) The software package is designed to interface with Scottsdale's design software, ScotSteel, and must be used only in this context.
- 3) The software does not include the tie downs of the trusses, including child trusses to girder trusses. Tie down is not part of the truss software. The software calculates the critical reactions at the support points. These reactions are displayed in the truss output report. The [Scottsdale Design Engineering Manual](#) (within the Scottsdale Knowledge Base) provides the tie-down bracketry details, including the number of screws. An example of an H1A Hurricane Tie is shown in Figure 7 below. The recommended tie-down details are provided with the truss output report.

**H1A HURRICANE TIE**

The H1A Hurricane Tie is typically used to provide hold down capacity for the SCOTRUSS® Roof and Floor Truss system. They can be attached in multiple configurations for many situations. SCOTPANEL® members can also be restrained with the H1A bracket.

| Name                                                                              | H1A Hurricane Tie               |  |  |
|-----------------------------------------------------------------------------------|---------------------------------|--|--|
|  |                                 |  |  |
| Supplier                                                                          | Simpson                         |  |  |
| Steel Grade                                                                       | G350 0.95mm BMT                 |  |  |
| Use                                                                               | Truss or Panel Rafter Hold Down |  |  |
| Protection                                                                        | G90/Z275 Galvanizing            |  |  |

**Fixing:**  
Attach with recommended fasteners. Ensure the correct number of screws are used for the required capacity.

**Design Capacities (Uplift kN)**

| Truss Properties | No. of Screws | Wall Frame - G550 |      |      |
|------------------|---------------|-------------------|------|------|
|                  |               | 0.55              | 0.75 | 0.95 |
| G550             | 2 & 2         | 1.54              | 1.54 | 1.54 |
|                  | 4 & 4         | 3.08              | 3.08 | 3.08 |
|                  | 2 & 2         | 1.54              | 2.96 | 2.96 |
|                  | 4 & 4         | 3.08              | 5.92 | 5.92 |
| G350             | 2 & 2         | 1.54              | 2.96 | 3.91 |
|                  | 4 & 4         | 3.08              | 5.92 | 9.37 |
|                  | 2 & 2         | 2.51              | 2.51 | 2.51 |
|                  | 4 & 4         | 5.02              | 5.02 | 5.02 |
| G350             | 2 & 2         | 2.51              | 3.58 | 3.58 |
|                  | 4 & 4         | 5.02              | 7.16 | 7.16 |
|                  | 2 & 2         | 2.51              | 3.58 | 3.91 |
|                  | 4 & 4         | 5.02              | 7.16 | 9.65 |

**FASTENERS**

| HEX HEAD TEK SCREW                      |
|-----------------------------------------|
| 10g - 16 x 16mm, HWH. Hex, DP 4.8mm Dia |



| WAFER HEAD TEK SCREW                      |
|-------------------------------------------|
| 10g - 16 x 16mm, Flat. Ph#2, DP 4.8mm Dia |

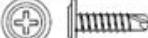



Figure 7 - Example Tie Instruction

## User Qualification

Users of the software must be:

- Fully trained in accordance with the Scottsdale Training Manual with a Certificate of Completion.
- Fully identified and recognised by Scottsdale as a competent user with experience in construction and/or manufacturing of trusses.
- Fully informed by Scottsdale on any up-to-date enhancements/additions to the software.
- The validity of the certification will last a period of no more than 3 years.

# History of Revisions/Updating

The software version number consists of 4 numbers: Year.Month.Major Build.Minor Build.

The last six releases of ScotSteel were:

- 16 December 2025 – Version 25.12.3012.1
- 08 December 2025 – Version 25.12.3012
- 12 May 2025 – Version 25.5.3011.1
- 28 April 2025 – Version 25.4.3011
- 16 October 2024 – Version 24.10.3010
- 27 August 2024 – Version 24.8.3009

Below is the link to the information containing all releases, along with release notes for each version (stored on the Scottsdale Knowledge Base for authorised users):

<https://knowledge.scottsdalesteelframes.com/software-releases>

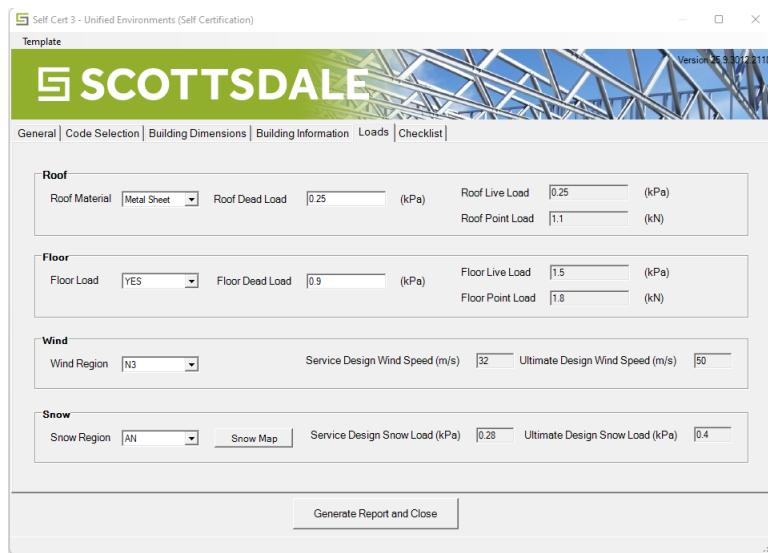
# Software Features

## Referenced Documents

The software is based on information from the following NCC and other referenced documents:

### NCC references

- AS-NZS 1170 -Part 0: 2002 General Principles (Incorporating Amendment Nos 1,2,3,4 and 5)
- AS-NZS 1170 -Part 1: 2002 Permanent Imposed and Other Actions (Incorporating amendment Nos 1 and 2-Reconfirmed 2016)
- AS-NZS 1170 -Part 2: 2021 Wind Actions (Incorporating amendment No 1)
- AS 4055: 2021 Wind load for housing (Fourth edition 2021)
- AS-NZS 1170 -Part 3: 2003-Snow and Ice Actions (Incorporating amendment Nos 1 and 2)
- AS/NZS 4600:2018 Cold-formed steel structures
- Building Code of Australia 2022 Volume 1 and 2
- NASH Standard Residential and Low-rise steel framing – Part1 – Design Criteria (2005) – Incorporating Amendment C: September 2011
- NASH Standard Residential and Low-rise steel framing – Part2 – Design Solutions (2014) – Incorporating Amendment A:2015


### Other references

- NASH Handbook - Design of Residential and Low-rise Steel Framing 2009

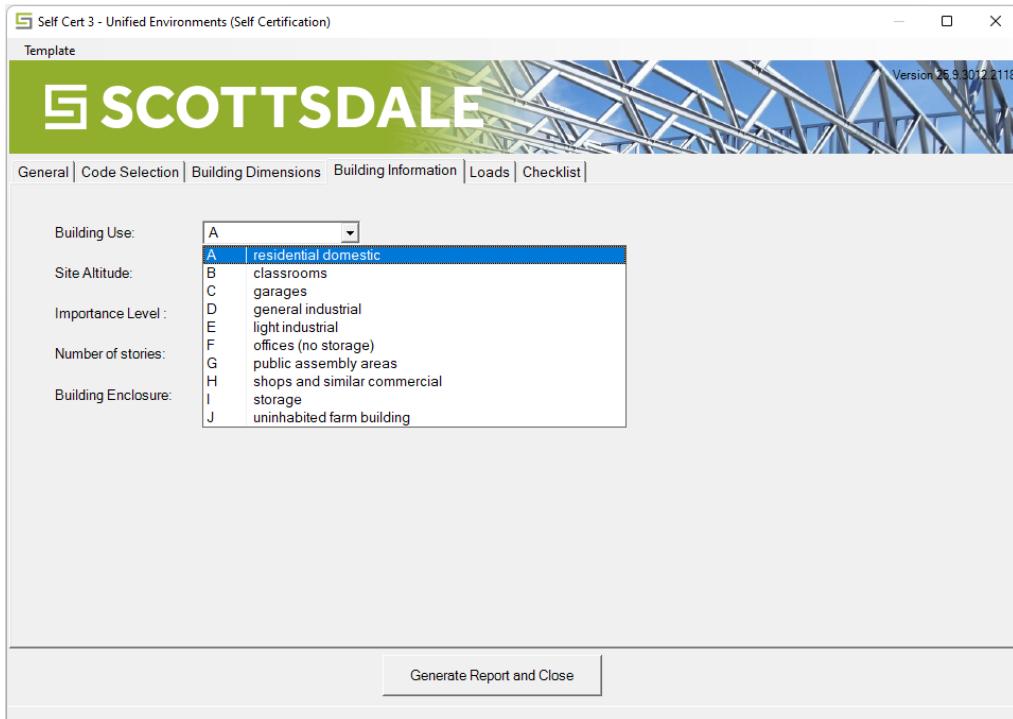
## Inputs

### Loads

Loads can be entered in the window as shown in Figure 8 below.



The screenshot shows the 'Load input window' of the SCOTTS DALE software. It includes sections for 'Roof', 'Floor', 'Wind', and 'Snow'. Each section contains dropdown menus and input fields for load values. A 'Generate Report and Close' button is at the bottom.


Figure 8 - Load input window

## Dead load

- **Roof dead load:** based on the roof material (sheet roof - 0.25 kPa, Tile roof – 0.75 kPa)
- **Ceiling dead load:** Hard Coded as 0.2 kPa
- **Floor dead load:** Hard Coded as 0.9 kPa

## Live Load

User can select the building usage from the drop-down list as shown in Figure 9 below. The live load will be automatically determined from the software based on the building usage.



The screenshot shows the 'Building usage selection' window of the SCOTTS DALE software. It features a dropdown menu for 'Building Use' with 'residential domestic' selected. Other options in the list include classrooms, garages, general industrial, light industrial, offices (no storage), public assembly areas, shops and similar commercial, storage, and uninhabited farm building. A 'Generate Report and Close' button is at the bottom.

Figure 9 - Building usage selection

- **Roof Live load:** 0.25 kPa
- **Floor Live load:** Will be automatically changed based on the building usage (refer Table 1 below)
- **Roof Point load:** 1.1 kN for residential and 1.4 kN for commercial
- **Floor Point load:** Will be automatically changed based on the building usage (refer Table 1 below)

| Building Use           | Floor Live (kPa) | Floor Point (kN) |
|------------------------|------------------|------------------|
| A Residential          | 1.5              | 1.8              |
| B Classroom            | 3                | 2.7              |
| C Garages              | 2.5              | 13               |
| D General Industrial   | 5                | 4.5              |
| E Light Industrial     | 3                | 3.5              |
| F Offices (no Storage) | 3                | 2.7              |
| G Public assembly area | 4                | 2.7              |
| H Shops and similar    | 4                | 3.6              |
| I Storage              | 7.5              | 4.5              |
| J Farm Building        | 5                | 4.5              |

*Table 1 - Live Loads Vs. building usage*

- **Ceiling Point load:** 1.1 kN when the head height is greater than 1.2 m and 0.9 kN when the clearance is less than 1.2 m

## Wind Load

User can select the wind class from the drop-down list (N1 to N6 or C1 to C6). Once user select the wind region, software can determine the design wind velocity based on the hard-coded tables (Figure 10 below) in accordance with AS 4055 -2021 and as shown below.

**Table 2.1(A) — Design gust wind speed ( $V_h$ ) for non-cyclonic Regions A and B**

| Site wind classification | Design gust wind speed ( $V_h$ ) at height ( $h$ )<br>m/s |                                       |
|--------------------------|-----------------------------------------------------------|---------------------------------------|
|                          | Serviceability limit state<br>( $V_{h,s}$ )               | Ultimate limit state<br>( $V_{h,u}$ ) |
| N1                       | 26                                                        | 34                                    |
| N2                       | 26                                                        | 40                                    |
| N3                       | 32                                                        | 50                                    |
| N4                       | 39                                                        | 61                                    |
| N5                       | 47                                                        | 74                                    |
| N6                       | 55                                                        | 86                                    |

**Table 2.1(B) — Design gust wind speed ( $V_h$ ) for cyclonic Regions C and D**

| Site wind classification | Design gust wind speed ( $V_h$ ) at height ( $h$ )<br>m/s |                                       |
|--------------------------|-----------------------------------------------------------|---------------------------------------|
|                          | Serviceability limit state<br>( $V_{h,s}$ )               | Ultimate limit state<br>( $V_{h,u}$ ) |
| C1                       | 32                                                        | 50                                    |
| C2                       | 39                                                        | 61                                    |
| C3                       | 47                                                        | 74                                    |
| C4                       | 55                                                        | 86                                    |

NOTE [Section 3](#) may present different pressures for the same wind speed depending on classification.

*Figure 1 - Design gust wind speed*

The wind pressure is calculated from the determined design wind velocity. The software detects the wind coefficient based on the average building height, building width, truss length, the roof pitch, and the truss shape.

## Snow Load

User can select the snow region from the drop-down list as “N/A, AN, AC, AS and AT” and enter the site elevation under the building information. Based on the snow region and the elevation, the software can calculate the ground snow load as shown in Figure 11 below.

| SNOW CALCULATION               |      |
|--------------------------------|------|
| region                         | AN   |
| elevation above sea level, (m) | 900  |
| ground snow load, (kPa)        | 0.4  |
| Exposure Reduction Coefficient | 1    |
| service snow load, (kPa)       | 0.28 |
| ultimate snow load, (kPa)      | 0.4  |

*Figure 2 - Snow load calculation*

The software can calculate all the possible scenarios of applied snow load on the truss by considering the roof pitch/truss shape. There are four different snow load cases as shown in Figure 12 below.

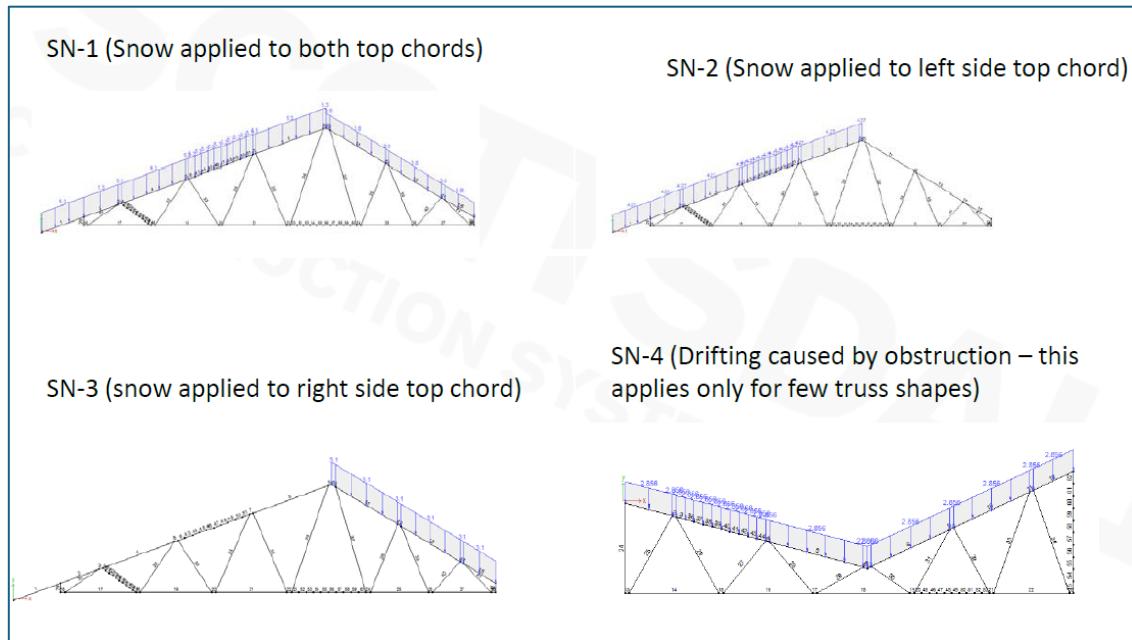



Figure 3 - Snow load display

## Load combinations

### Serviceability Design

Serviceability Design is conducted to check the deflection of the truss nodes. Following deflection limits are considered.

For roof

- Dead = Span/300 or 12 mm, whichever is the minimum
- Live = Span/250
- Wind = Span/150

For floor

- Dead = Span/300 or 12 mm, whichever is the minimum
- Live = Span/250

The following loads are considered in the software.

- 1) Dead Load
  - a) Roof - Roof dead load + ceiling dead load
  - b) Floor - Floor dead load + ceiling under floor
- 2) Live Load
  - a) Roof - Roof live load + ceiling live load
  - b) Floor - Floor live load + ceiling under floor live load  
(ceiling live load is considered as zero)
- 3) Snow Load - Applied only on roof trusses

Snow load is calculated as per the section 3.2.1.4 given above and applied as 4 separate cases SN-1 to SN-4.

4) Wind Load - Applied only on roof trusses

Wind loads are calculated by determining both external and internal coefficients. Both upward and downward loads are calculated. External wind loads are calculated by considering 4 different directions, as shown in Figure 13 below. WE and EW load cases represent the wind loads along the truss in both directions. NS load case represents the wind load across the truss by considering the truss as an edge truss. So that NS wind load gives the highest uplift load on the truss. The SN load case is also for the crosswind, and the truss will be at the far end of the building. This load case gives the maximum downward load. Internal load is calculated by considering non-cyclonic and cyclonic conditions.

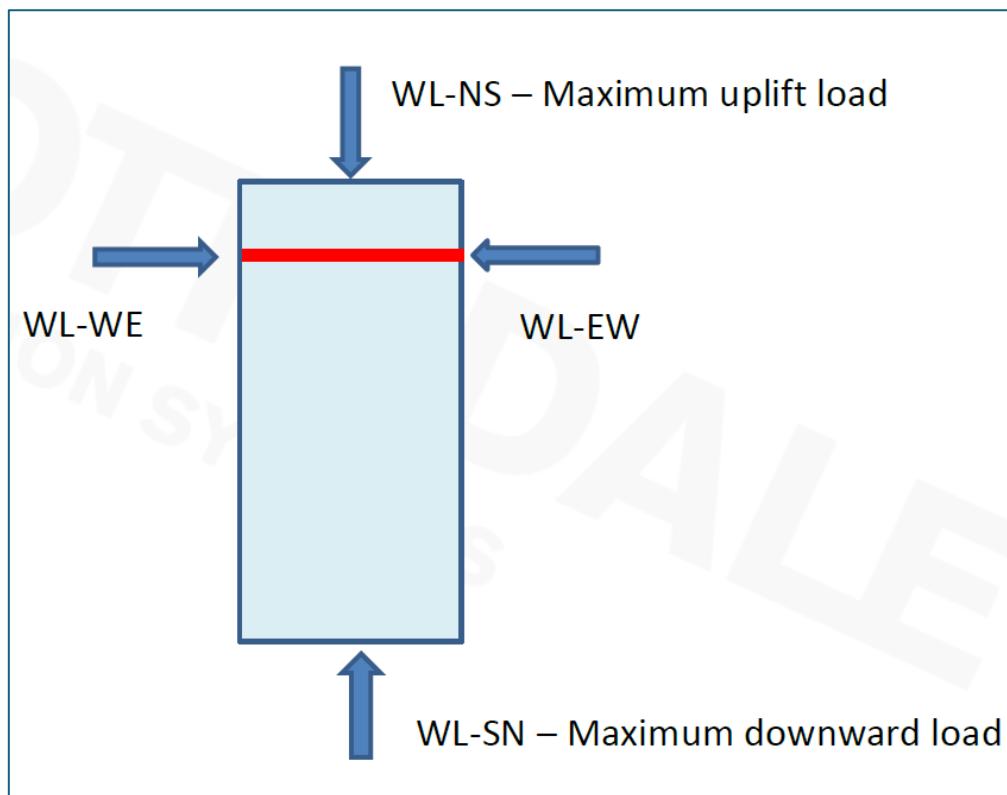



Figure 4 - Wind direction

External and internal wind loads are then combined to get the service wind load cases as shown in Table 2 below. The software applies all the specified wind combinations and determines the critical deflection values.

The table below shows the wind load external and internal combinations by considering all 4 directions specified in Figure 13 above. It combines External uplift + Internal uplift, External uplift + internal downwind, External downwind + internal uplift, and External downwind + internal downwind for all the directions

| WL-WE1 | WL-WE2 | WL-EW1 | WL-EW2 | WL-NS1 | WL-SN1 | WL-IP1 | WL-IP2 | WL-IP3 | WL-IP4 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1      | 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      |
| 1      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      |
| 0      | 1      | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      |
| 0      | 1      | 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      |
| 0      | 0      | 1      | 0      | 0      | 0      | 1      | 0      | 0      | 0      |
| 0      | 0      | 1      | 0      | 0      | 0      | 0      | 1      | 0      | 0      |
| 0      | 0      | 0      | 1      | 0      | 0      | 1      | 0      | 0      | 0      |
| 0      | 0      | 0      | 1      | 0      | 0      | 0      | 1      | 0      | 0      |
| 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 1      | 0      |
| 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 1      |
| 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 1      | 0      |
| 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 1      |

Table 2 - SLS load combinations

## Ultimate Design

- Roof Trusses
  - $1.35 \text{ Dead} = 1.35 \times (\text{Roof dead load} + \text{ceiling dead load})$
  - $1.2 \text{ Dead} + 1.5 \text{ Live} = 1.2 \times (\text{Roof dead load} + \text{ceiling dead load}) + 1.5 \times (\text{Roof live load} + \text{ceiling live load})$
  - $1.2 \text{ Dead} + 1.5 \text{ Point Load} = 1.2 \times (\text{Roof dead load} + \text{ceiling dead load}) + 1.5 \times (\text{Roof point load})$
  - $1.2 \text{ Dead} + \text{Snow} = 1.2 \times (\text{Roof dead load} + \text{ceiling dead load}) + (\text{Snow load on roof})$
  - $1.2 \text{ Dead} + \text{Wind} = 1.2 \times (\text{Roof dead load} + \text{ceiling dead load}) + (\text{External wind load} + \text{internal wind load})$
  - $\text{Wind} - 0.9 \text{ Dead} = (\text{External wind load} + \text{internal wind load}) - 0.9 \times (\text{Roof dead load} + \text{ceiling dead load})$
- Floor Trusses
  - $1.35 \text{ Dead} = 1.35 \times (\text{Floor dead load} + \text{ceiling under floor dead load})$
  - $1.2 \text{ Dead} + 1.5 \text{ Live} = 1.2 \times (\text{Floor dead load} + \text{ceiling under floor dead load}) + 1.5 \times (\text{Floor live load})$
  - $1.2 \text{ Dead} + 1.5 \text{ Point Load} = 1.2 \times (\text{Floor dead load} + \text{ceiling under floor dead load}) + 1.5 \times (\text{Floor point load})$

**Note:** More details about the load combinations are available in the documents "LoadCombinations\_SLS" and "LoadCombinations\_ULTS" which are attached below.

|                                                                                                                       |                                                                                                                        |                                                                                                                        |                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|  RoofTruss_LoadCom binations_SLS.csv |  FloorTruss_LoadCom binations_ULS.csv |  FloorTruss_LoadCom binations_SLS.csv |  RoofTruss_LoadCom binations_ULS.csv |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|

# Analysis and Design

## Load application

Uniformly distributed loads are applied to the top and bottom chords as required.

A concentrated load is applied on the centre of every member, one at a time. This applies to both the top and the bottom chord of the truss between nodal points. Concentrated load is combined with dead loads (1.2 Dead Load + 1.5 Point Load). The software determines the induced forces with this load. Figures 14 and 15 below show the typical position of a concentrated load on the main member and the joint, respectively.

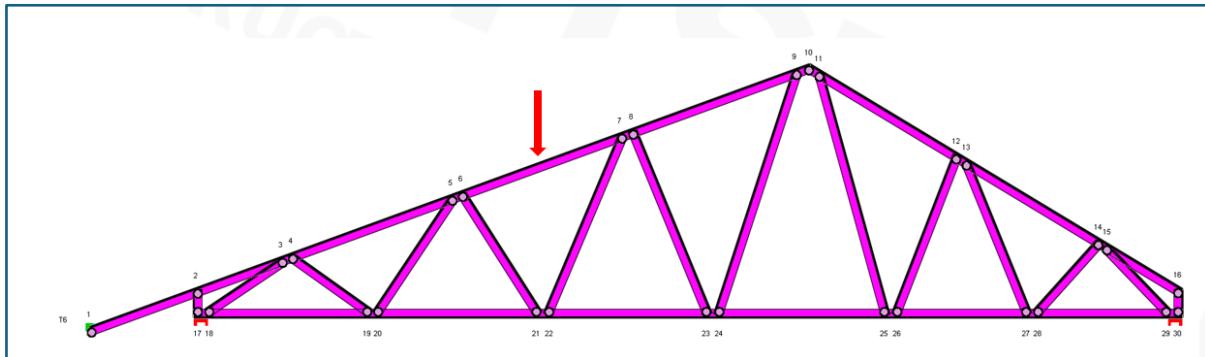



Figure 5 - Concentrated load on the main Top Chord panel member. Applied at the centre of the member

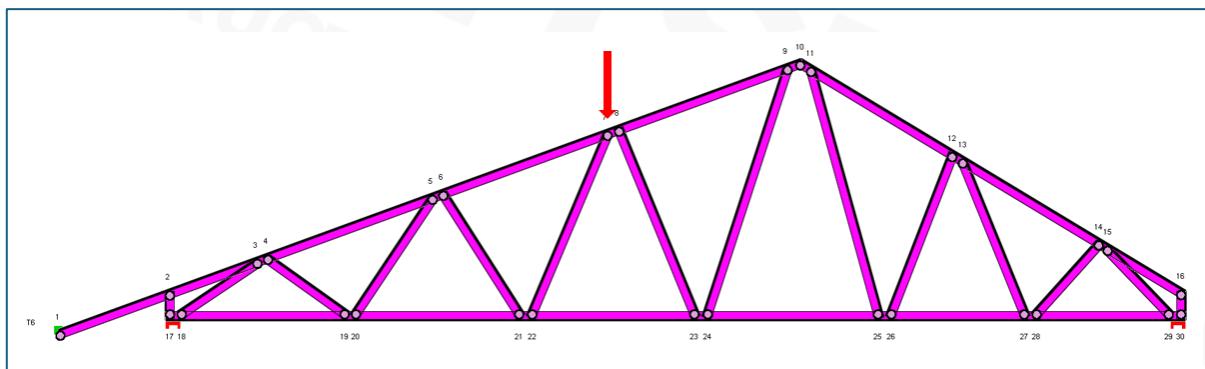



Figure 6 - Concentrated load on the Top Chord joint. Applied at the centre of the joint

## Member section details

The most common sections of the truss can be seen from Tables 3 and 4 below.

| Designation    | Depth<br>(mm) | Web<br>Width<br>internal<br>(mm) | Flange<br>width<br>(mm) | Lip<br>depth<br>(mm) | Radius | Feed<br>width<br>(mm) | Thickness (BMT)<br>(mm) | Grade |
|----------------|---------------|----------------------------------|-------------------------|----------------------|--------|-----------------------|-------------------------|-------|
| 6050/0.75/G350 | 51            | 39                               | 14                      | 7                    | 2      | 173                   | 0.75                    | G350  |
| 6050/0.95/G350 |               |                                  |                         |                      |        |                       | 0.95                    | G350  |
| 6050/1.15/G350 |               |                                  |                         |                      |        |                       | 1.15                    | G350  |
| 6050/0.55/G550 | 51            | 39                               | 14                      | 7                    | 2      | 173                   | 0.55                    | G550  |
| 6050/0.75/G550 |               |                                  |                         |                      |        |                       | 0.75                    | G550  |
| 6050/0.95/G550 |               |                                  |                         |                      |        |                       | 0.95                    | G550  |
| 6075/0.75/G550 | 77            | 39                               | 14                      | 7                    | 2      | 224                   | 0.75                    | G550  |
| 6075/0.95/G550 |               |                                  |                         |                      |        |                       | 0.95                    | G550  |
| 6075/1.15/G350 |               |                                  |                         |                      |        |                       | 1.15                    | G350  |
| 6075/0.95/G350 | 77            | 39                               | 14                      | 7                    | 2      | 224                   | 0.95                    | G350  |
| 6075/1.15/G350 |               |                                  |                         |                      |        |                       | 1.15                    | G350  |

Table 3 - Top-hat sections

| Designation       | Stud depth (mm) | Flange width (mm) | Lip depth (mm) | Web stiffener distance (mm) | Corner web stiffener offset (mm) | Corner radius | Feed width (mm) | Thickness (BMT) (mm) | Grade |
|-------------------|-----------------|-------------------|----------------|-----------------------------|----------------------------------|---------------|-----------------|----------------------|-------|
| C63_37/0.55/G550  | 63              | 37                | 7.5            | 25                          | 1                                | 2             | 143             | 0.55                 | G550  |
| C63_37/0.75/G550  |                 |                   |                |                             |                                  |               |                 | 0.75                 | G550  |
| C63_37/0.95/G550  |                 |                   |                |                             |                                  |               |                 | 0.95                 | G550  |
| C63_37/0.75/G350  |                 |                   |                |                             |                                  |               |                 | 0.75                 | G350  |
| C70_37/0.55/G550  | 70              | 37                | 7.5            | 25                          | 1                                | 2             | 153             | 0.55                 | G550  |
| C70_37/0.75/G550  |                 |                   |                |                             |                                  |               |                 | 0.75                 | G550  |
| C70_37/0.95/G550  |                 |                   |                |                             |                                  |               |                 | 0.95                 | G550  |
| C76_37/0.55/G550  | 76              | 37                | 7.5            | 25                          | 1                                | 2             | 156             | 0.55                 | G550  |
| C76_37/0.75/G550  |                 |                   |                |                             |                                  |               |                 | 0.75                 | G550  |
| C76_37/0.95/G550  |                 |                   |                |                             |                                  |               |                 | 0.95                 | G550  |
| C90_37/0.75/G350  | 90              | 37                | 7.5            | 25                          | 1                                | 2             | 173             | 0.75                 | G350  |
| C90_37/0.95/G350  |                 |                   |                |                             |                                  |               |                 | 0.95                 | G350  |
| C90_37/1.15/G350  |                 |                   |                |                             |                                  |               |                 | 1.15                 | G350  |
| C90_37/0.55/G550  | 90              | 37                | 7.5            | 25                          | 1                                | 2             | 173             | 0.55                 | G550  |
| C90_37/0.75/G550  |                 |                   |                |                             |                                  |               |                 | 0.75                 | G550  |
| C90_37/0.95/G550  |                 |                   |                |                             |                                  |               |                 | 0.95                 | G550  |
| C90_47/0.75/G350  | 90              | 46                | 10             | 25                          | 2                                | 2             | 190             | 0.75                 | G350  |
| C90_47/0.95/G350  |                 |                   |                |                             |                                  |               |                 | 0.95                 | G350  |
| C90_47/1.15/G350  |                 |                   |                |                             |                                  |               |                 | 1.15                 | G350  |
| C90_47/0.75/G550  | 90              | 46                | 10             | 25                          | 2                                | 2             | 190             | 0.75                 | G550  |
| C90_47/0.95/G550  |                 |                   |                |                             |                                  |               |                 | 0.95                 | G550  |
| C140_48/0.75/G350 | 140             | 46                | 10             | 46                          | 1                                | 2             | 244             | 0.75                 | G550  |

|                   |     |    |    |    |   |   |      |      |      |
|-------------------|-----|----|----|----|---|---|------|------|------|
| C140_48/0.95/G350 |     |    |    |    |   |   | 0.95 | G550 |      |
| C140_48/1.15/G350 |     |    |    |    |   |   | 1.15 | G350 |      |
| C140_48/0.75/G550 | 140 | 46 | 10 | 46 | 1 | 2 | 244  | 0.75 | G550 |
| C140_48/0.95/G550 |     |    |    |    |   |   |      | 0.95 | G550 |

Table 4 - Lipped channel sections (C-section)

The geometries of the top-hat sections are shown in Figure 16, while Figure 17 shows the details of C-sections.

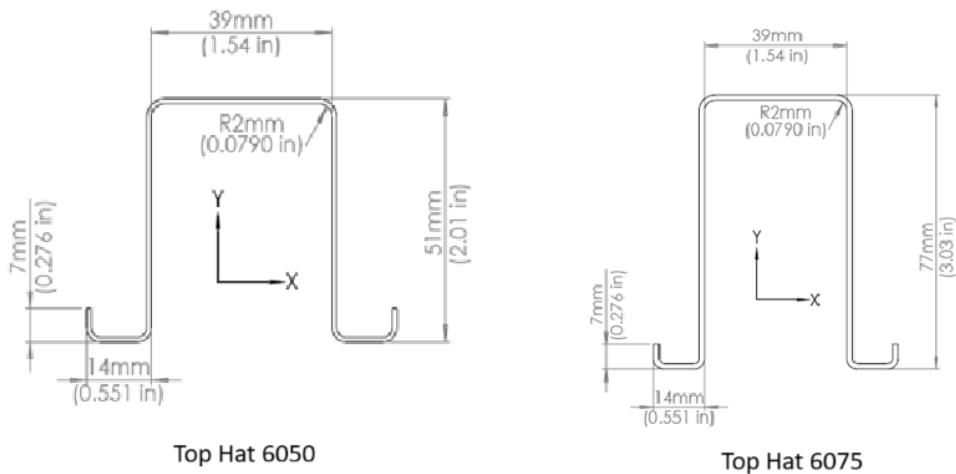



Figure 7 - Top-hat section geometries used in ScotSteel software

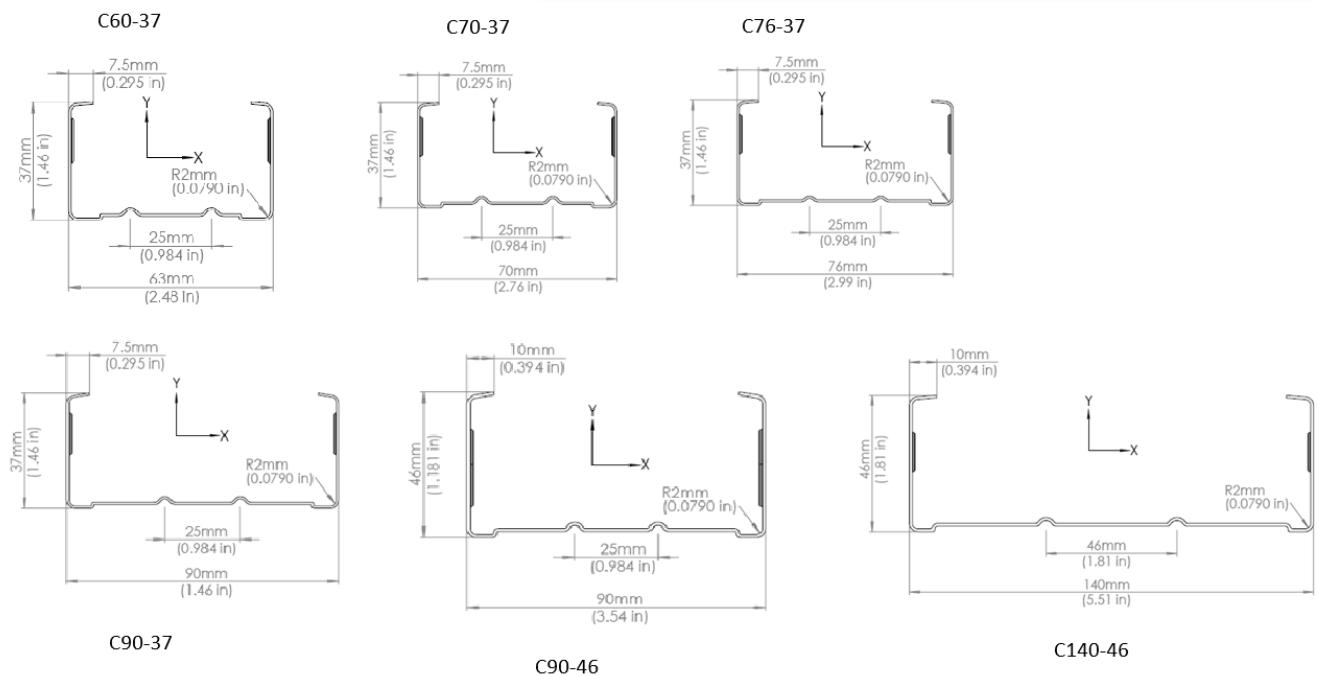



Figure 8 - Lipped channel sections used in ScotSteel software

## Structural analysis

Structural analysis of the truss is carried out using the finite element analysis technique with beam elements. The beam element considered for the analysis consists of an element connected by two nodes. Each node in the element has three degrees of freedom, which include translation along two axes and rotation about one axis. The cross-section considered for analysis is constant throughout the analysis. The Analyser uses a standard Cholesky matrix decomposition as shown in Eq.(1) so that the entire truss is reduced to a solvable series of simultaneous equations that do not require the loads to be present. These loads can then be applied separately without repeating the decomposition of the structural assembly. This method is rapid, stable, and almost always converges. The trusses can be determinate or statically indeterminate. The Analyser is independent of the number of load cases and can be specifically tailored to suit various code requirements.

$$A = LL^T \quad (1)$$

Where:

- L = given matrix
- $L^T$  = transpose of the matrix

Firstly, the software selects a truss based on an inbuilt prioritising algorithm wherein trusses of a similar shape carrying the same loads are grouped and analysed. Then the design of the corresponding trusses takes place based on the selected code of practice. The order of analysis also identifies the prerequisite trusses that need to be analysed in case of multiple auxiliary trusses connected to a main truss (e.g. Analysis of a Girder truss).

## Design

If the building dimensions are within the limits of the self-certification requirements, the design will pass self-certification, and the user can proceed with the engineering. Otherwise, it will give a warning message and will not allow the user to proceed with the self-certification.

In the design software, when you engineer the trusses and they all pass, the summary window will pop up and the trusses become green as shown in Figure 18 below, to show the user they have passed:

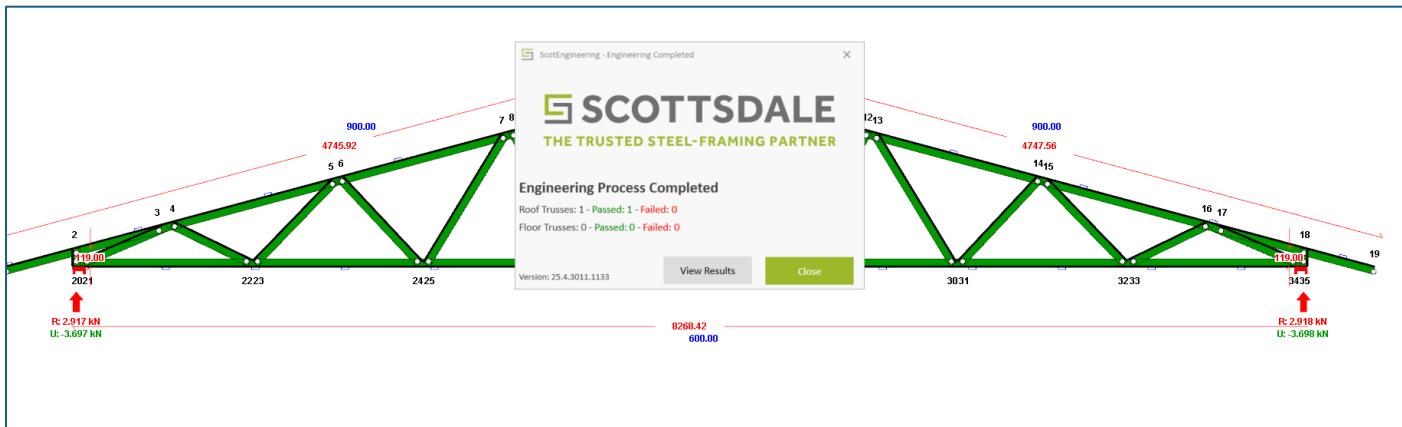



Figure 18 - Truss with passed status

If the design is not satisfactory, a pop-up window will appear advising of the failure, and the truss will turn red as shown in Figure 19 below. The user can then add more web members, select a thicker section, or add more trusses by reducing the spacing until the truss passes.



Figure 19 - Truss with failed status

## Options for structural detail input

The members/sections are selected for roof trusses or floor trusses from the dropdown list, as shown in Figure 20 below. This list is established in accordance with AS/NZS 4600 by computing the capacities based on the effective width method. Software checks all the capacities like bending, shear, axial and combinations of them.

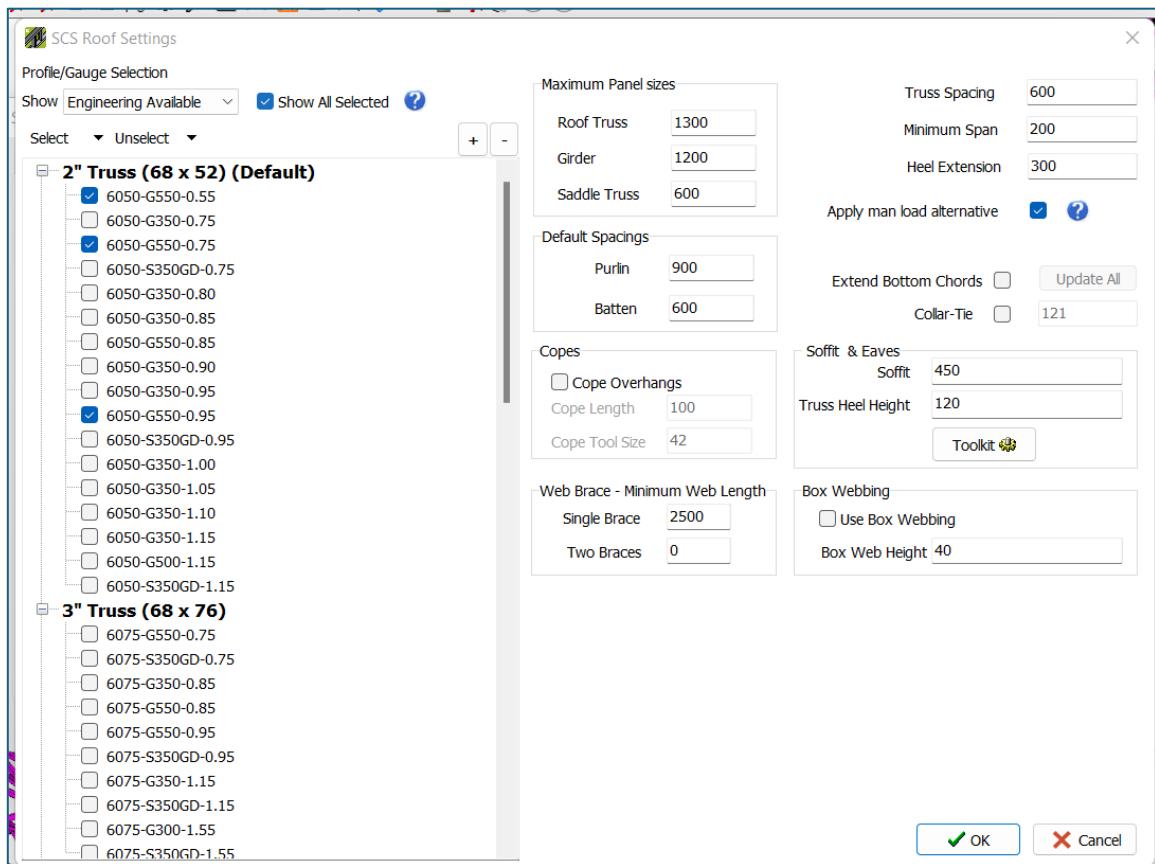



Figure 9 - Scottsdale sections from the project properties

The selected sections appear under the truss profile as shown in Figure 21 below:

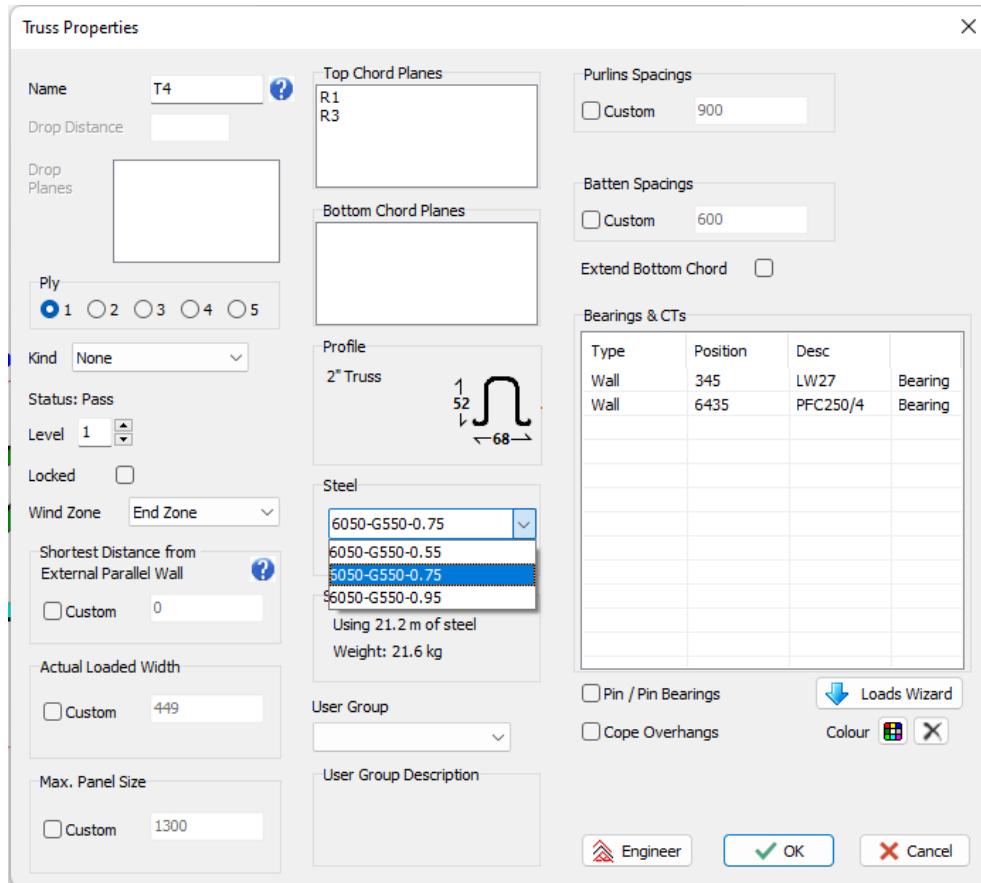



Figure 10 - Scottdale truss properties

The software first analyses and conducts the design check from the thinnest/weakest section. It is then stepped up to the next stronger section if the first one fails. The whole truss is then analysed and checked for the second section.

E.g., For the truss, it will analyse and check for 0.55 mm thick steel first. If it fails, the whole truss is automatically changed to 0.75 mm thick steel and then analysed and designed for 0.75 mm steel. If it passes, the software displays the results; otherwise, will move to the next thickness.

If the user wants to select only one section, they can select the section and lock it as shown in Figure 22. This will apply only to the selected truss/trusses.

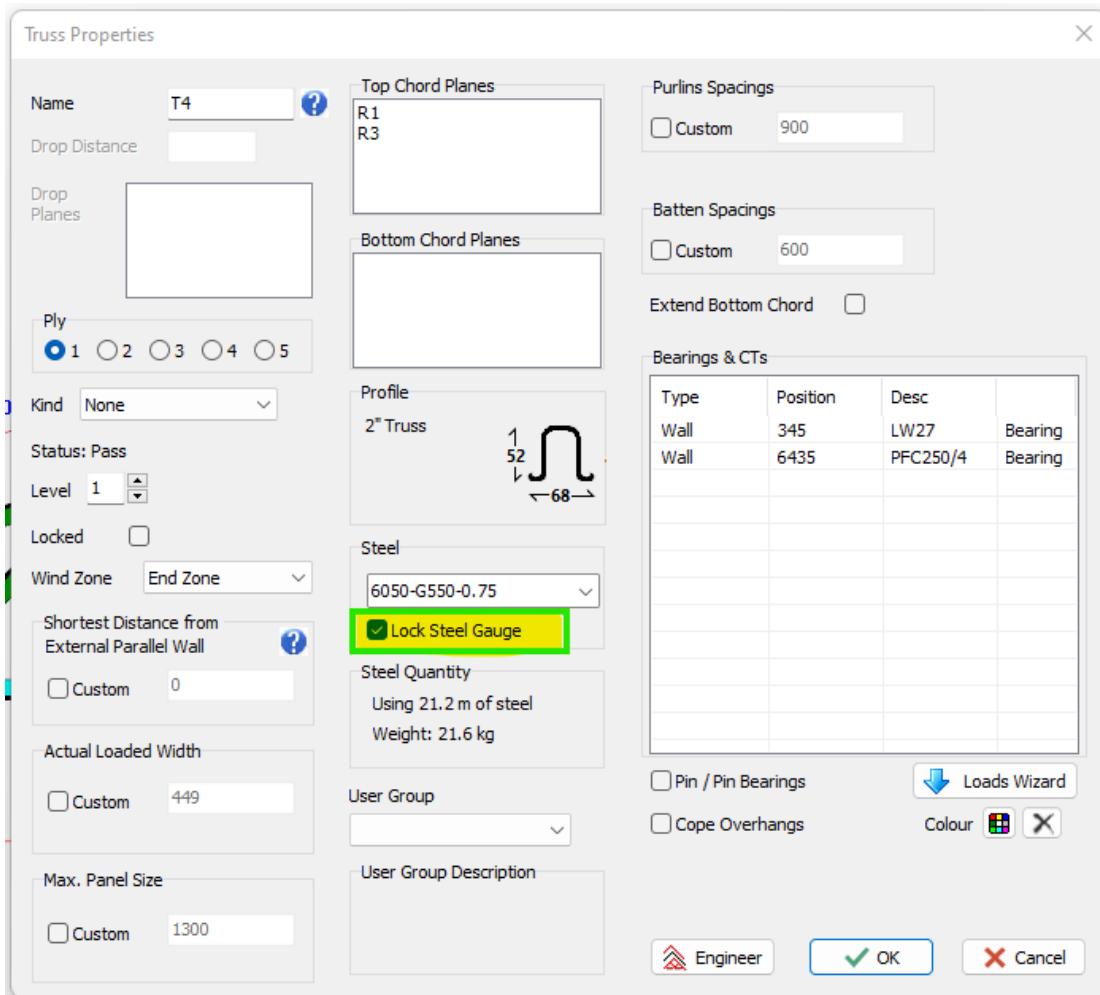



Figure 11 - Truss properties with locked section

Once it completes the analyses and design, the software will show a brief summary (pass or fail) and change the colour based on the truss status, as shown in Figures 23 and 24.

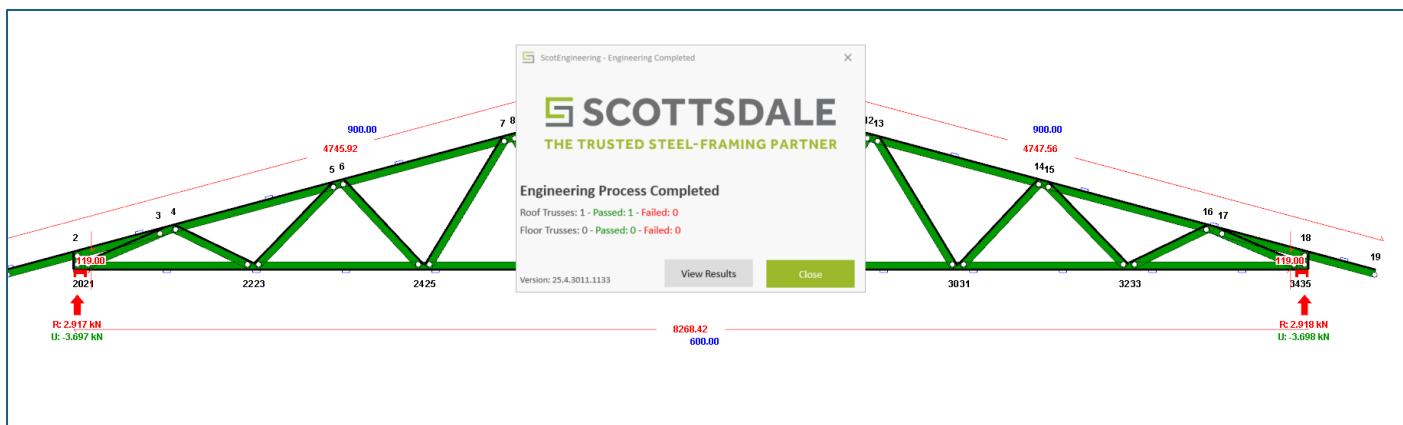



Figure 12 - Green – Pass




Figure 13 - Red - Fail

The user can see the colour coding of the truss to see where the failure is, as given in Figure 25 below.

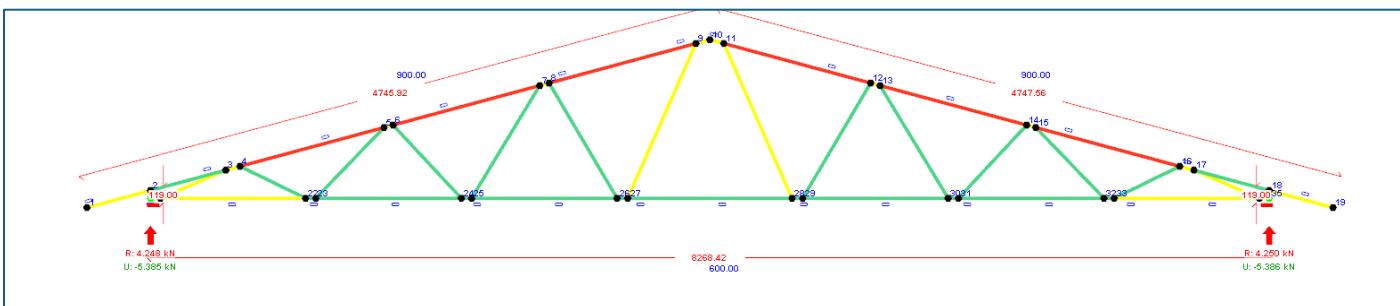



Figure 14 – Truss Colour Coding

The colour coding is based on the critical ratio of the member as shown in Figure 26 below.

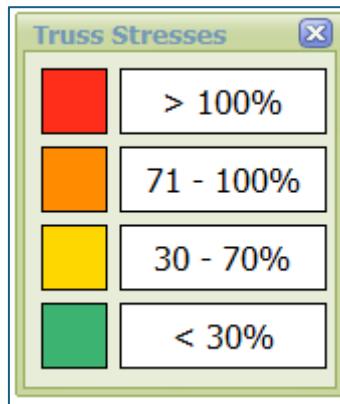



Figure 15 - Truss stress ratios

Green, yellow, and orange – the member is stronger than the applied forces.

- Green – the induced forces are less than 30% of the capacity of the member.
- Yellow – the induced forces are higher than 30% and less than 70% of the capacity of the member.
- Orange – the induced forces are higher than 70% and less than 100% of the capacity of the member.

## SCOTTSDALE

- Red – the member is weak and needs to be redesigned.

The software will then show the truss summary, with member-by-member critical ratios. It shows whether the trusses pass or fail. It shows the maximum ratio for the top chord, bottom chord, and web member. It also displays the maximum deflection with the allowable limits as shown in Figure 27 below.

Engineering Members - T14

Maximum CSI values

|     |       |        |       |     |       |        |
|-----|-------|--------|-------|-----|-------|--------|
| Top | 1.325 | Bottom | 0.485 | Web | 0.420 | FAILED |
|-----|-------|--------|-------|-----|-------|--------|

Node Deflections Summary

| Load Category | Load Combination | Node | Deflection (mm) | Limit (mm) | Status |
|---------------|------------------|------|-----------------|------------|--------|
| Max Dead      | SLS-001          | 26   | -1.593          | 12.000     | Pass   |
| Max Live      | SLS-002          | 9    | -0.836          | 32.360     | Pass   |
| Max Wind      | SLS-024          | 1    | -0.782          | 5.882      | Pass   |

Member Deflections Summary

| Load Category  | Load Combination | Member | Deflection (mm) | Limit (mm) | Status |
|----------------|------------------|--------|-----------------|------------|--------|
| Max Live       | SLS-002          | 17     | -0.278          | 2.862      | Pass   |
| Max Live Point | SLS-051          | 32     | 2.011           | 4.267      | Pass   |

Members

| M. | Nodes   | Compression | Tension | Bending | Shear | Bearing | Cr Ratio | Joint | Deflection Checks | Status |
|----|---------|-------------|---------|---------|-------|---------|----------|-------|-------------------|--------|
| 1  | 1 - 2   | 0.000       | 0.009   | 0.356   | 0.066 | 0.131   | 0.348    | OK    | Pass              | Pass   |
| 2  | 2 - 3   | 0.006       | 0.006   | 0.126   | 0.019 | 0.000   | 0.121    | OK    | Pass              | Pass   |
| 3  | 3 - 4   | 0.172       | 0.256   | 0.112   | 0.055 | 0.000   | 0.350    | OK    | Pass              | Pass   |
| 4  | 4 - 5   | 1.094       | 0.271   | 0.465   | 0.035 | 0.000   | 1.279    | OK    | Pass              | Fail   |
| 5  | 5 - 6   | 0.186       | 0.274   | 0.162   | 0.035 | 0.000   | 0.408    | OK    | Pass              | Pass   |
| 6  | 6 - 7   | 1.028       | 0.257   | 0.321   | 0.032 | 0.000   | 1.325    | OK    | Pass              | Fail   |
| 7  | 7 - 8   | 0.158       | 0.234   | 0.249   | 0.077 | 0.000   | 0.442    | OK    | Pass              | Pass   |
| 8  | 8 - 9   | 0.862       | 0.218   | 0.861   | 0.049 | 0.000   | 1.297    | OK    | Pass              | Fail   |
| 9  | 9 - 10  | 0.123       | 0.250   | 0.233   | 0.102 | 0.000   | 0.402    | OK    | Pass              | Pass   |
| 10 | 10 - 11 | 0.123       | 0.185   | 0.233   | 0.102 | 0.000   | 0.402    | OK    | Pass              | Pass   |
| 11 | 11 - 12 | 0.862       | 0.218   | 0.861   | 0.049 | 0.000   | 1.297    | OK    | Pass              | Fail   |
| 12 | 12 - 13 | 0.158       | 0.234   | 0.249   | 0.077 | 0.000   | 0.442    | OK    | Pass              | Pass   |
| 13 | 13 - 14 | 1.028       | 0.257   | 0.321   | 0.032 | 0.000   | 1.325    | OK    | Pass              | Fail   |
| 14 | 14 - 15 | 0.186       | 0.274   | 0.162   | 0.035 | 0.000   | 0.408    | OK    | Pass              | Pass   |
| 15 | 15 - 16 | 1.094       | 0.271   | 0.465   | 0.035 | 0.000   | 1.279    | OK    | Pass              | Fail   |
| 16 | 16 - 17 | 0.172       | 0.256   | 0.112   | 0.055 | 0.000   | 0.350    | OK    | Pass              | Pass   |
| 17 | 17 - 18 | 0.006       | 0.006   | 0.127   | 0.019 | 0.000   | 0.122    | OK    | Pass              | Pass   |
| 18 | 18 - 19 | 0.000       | 0.009   | 0.360   | 0.067 | 0.131   | 0.351    | OK    | Pass              | Pass   |
| 19 | 20 - 21 | 0.151       | 0.217   | 0.321   | 0.190 | 0.000   | 0.485    | OK    | Pass              | Pass   |
| 20 | 21 - 22 | 0.055       | 0.014   | 0.321   | 0.017 | 0.000   | 0.365    | OK    | Pass              | Pass   |
| 21 | 22 - 23 | 0.022       | 0.027   | 0.052   | 0.007 | 0.000   | 0.071    | OK    | Pass              | Pass   |

Save Deflections... Save Members... OK

Figure 16 - Truss status with CR ratios

Figure 28 shows the colour coding of the members. The user can identify which members are failed, as shown in red, and can then modify the truss to make it pass. Once modified, the truss becomes un-engineered, and the user will need to re-engineer it.

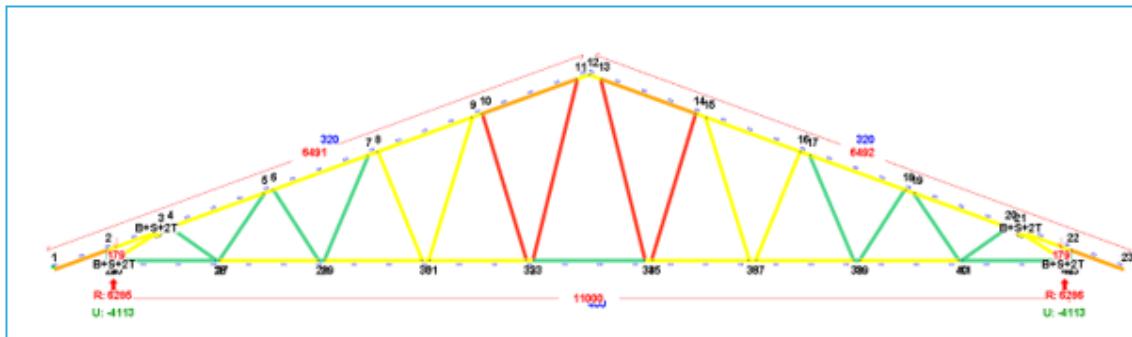



Figure 28 - Colour coding of a failure truss

Web members are failing in this truss. So the user can change the thickness, change the webbing configuration, or add a web brace as shown in Figure 29 and re-engineer it. Truss now passes.



Figure 29 - Colour coding with a truss pass

Connections – The connection capacities are calculated based on the test results. Two different connection types are used, as shown below for the selected section type.

- C-section trusses
  - 2 Rivets
  - 2 Rivets + 2 TEKs
  - 2 Rivets + 4 TEKs
- Top hat trusses
  - Bolt
  - Bolt + Spacer
  - Bolt + Spacer + 2 TEKs
  - Bolt + Spacer + 4 TEKs
- Rivet is 4.8 mm diameter standard rivet

- TEK is 4.8 mm TEK screw
- Bolt is 9.5 mm diameter bolt

Connections are checked and designed for the critical induced axial force at the connection. The checking starts with the strongest connection and progresses to the weakest one until failure has occurred. Once it has failed, it is automatically moved to the previous stronger connection to display the results. As an example, for top hat trusses, it will always start with Bolt + Spacer + 4 TEKs. If it passes only, it moves to Bolt + Spacer + 2TEKs and then to the Bolt + Spacer. If the Bolt + Spacer fails, the design connection will be Bolt + Spacer + 2 TEKs.

## Outputs

Description of the information that will be provided for regulatory approval:

The documents below shall be submitted for approval

- 1) Architectural plans including dimensions (By customer)
- 2) Environmental output (generated from SCS software)
- 3) Project layouts (generated by the user from SCS software)
- 4) Truss PDF output (generated by SCS software)
- 5) Tie down documentation (generated from SCS software)
- 6) Scottsdale Certification (generated from SCS software)

The following section describes the Environmental output generated by the software.

|                                                                                                                                                                        |              |                                                     |                 |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------|-----------------|--------|
| <br><b>THE TRUSTED STEEL-FRAMING PARTNER</b><br><small>Version 25.4.3011.2113</small> | Project Name | MODEL 1                                             | Project No.     | MOD 1  |
|                                                                                                                                                                        | Address      |                                                     |                 |        |
|                                                                                                                                                                        | Company      | SCS                                                 |                 |        |
|                                                                                                                                                                        | Detailer     | Ashley                                              | Certificate No. | 123456 |
|                                                                                                                                                                        | Reference    | Model 1 - Unified Environments (Self Certification) |                 |        |
|                                                                                                                                                                        |              |                                                     |                 |        |

| Disclaimer                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <small>Scottsdale Truss (Scottsdale Certification) assists skilled building design professionals certify truss designs created using Scottsteel. Scottdale Certification is not a substitute for professional judgement or independent enquiry, analysis, review, testing, calculations or other activities a skilled building design professional would be expected to make in the circumstances.</small>                   |  |
| <small>For the maximum extent permitted by law, Scottsdale disclaims any and all liability and is released from any claims in connection with Scottdale Certification where there has been an over reliance on Scottsteel by the designer, including where the designer has failed to take a reasonable level of diligence and care with the design of any trusses or checking of relevant engineering calculations.</small> |  |

| SELF CERTIFIED FOR TRUSSES ONLY |
|---------------------------------|
|---------------------------------|

| BUILDING DATA                            |                                |
|------------------------------------------|--------------------------------|
| country code                             | AU                             |
| wind code                                | AS/NZS 1170.2-2021 and AS 4055 |
| building use (code)                      | A                              |
| importance level                         | 2                              |
| annual prob. of exceedence - wind, (1/x) | 500                            |
| annual prob. of exceedence - snow, (1/x) | 150                            |
| annual prob. of exceedence - EQ, (1/x)   | 500                            |
| building length, (mm)                    | 25480                          |
| building width, (mm)                     | 8270                           |
| roof type                                | Hip                            |
| max. roof pitch, (deg)                   | 15.00                          |
| min roof pitch, (deg)                    | 15.00                          |
| roof height, (mm)                        | 6500                           |
| modular build                            | False                          |
| number of stories                        | 2                              |
| is building enclosed                     | Partly Enclosed                |
| roof material                            | Metal Sheet                    |

| SITE DATA                      |     |
|--------------------------------|-----|
| elevation above sea level, (m) | 180 |
| wind region                    | N3  |

| GRAVITY LOADS       |                  |                  |                  |
|---------------------|------------------|------------------|------------------|
|                     | dead load, (kPa) | live load, (kPa) | point load, (kN) |
| roof                | 0.25             | 0.25             | 1.1              |
| ceiling under roof  | 0.2              | 0                | 1.1              |
| floor               | 0.9              | 1.5              | 1.8              |
| ceiling under floor | 0.2              | 0                | 1.1              |

| WIND CALCULATION                 |       |
|----------------------------------|-------|
| service design wind speed (m/s)  | 32    |
| ultimate design wind speed (m/s) | 50    |
| service dynamic pressure (kPa)   | 0.614 |
| ultimate dynamic pressure (kPa)  | 1.5   |

| SNOW CALCULATION               |  |     |
|--------------------------------|--|-----|
| region                         |  | N/A |
| elevation above sea level, (m) |  | 180 |
| ground snow load, (kPa)        |  | 0   |
| Exposure Reduction Coefficient |  | 1   |
| service snow load, (kPa)       |  | 0   |
| ultimate snow load, (kPa)      |  | 0   |

| LOAD SUMMARY                                 |  |        |
|----------------------------------------------|--|--------|
| wind uplift service (roof), (kPa)            |  | -0.869 |
| wind uplift service (canopy), (kPa)          |  | -0.829 |
| wind uplift ultimate (roof), (kPa)           |  | -2.122 |
| wind uplift ultimate (canopy), (kPa)         |  | -2.025 |
| wind pressure service (roof), (kPa)          |  | 0.356  |
| wind pressure service (canopy), (kPa)        |  | 0.442  |
| wind pressure ultimate (roof), (kPa)         |  | 0.869  |
| wind pressure ultimate (canopy), (kPa)       |  | 1.08   |
| roof dead load, (kPa)                        |  | 0.25   |
| roof imposed load, (kPa)                     |  | 0.25   |
| roof point load, (kN)                        |  | 1.1    |
| service snow load, (kPa)                     |  | 0      |
| ultimate snow load, (kPa)                    |  | 0      |
| roof ceiling dead load, (kPa)                |  | 0.2    |
| roof ceiling live load, (kPa)                |  | 0      |
| roof ceiling point load, (kN)                |  | 1.1    |
| floor dead load, (kPa)                       |  | 0.9    |
| floor live load, (kPa)                       |  | 1.5    |
| floor point load, (kN)                       |  | 1.8    |
| floor ceiling dead load, (kPa)               |  | 0.2    |
| floor ceiling live load, (kPa)               |  | 0      |
| floor ceiling point load, (kN)               |  | 1.1    |
| wind face load service (walls), (kPa)        |  | 0.746  |
| wind face load ultimate (walls), (kPa)       |  | 1.823  |
| wall dead load (hardcoded), (kPa)            |  | n/a    |
| wind internal wall face load service, (kPa)  |  | -0.184 |
| wind internal wall face load ultimate, (kPa) |  | -0.45  |

| SOFTWARE CHECKLIST                                                                                                                                                                    |   |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|
| Self-Certification (AU Trusses) version number                                                                                                                                        |   | 1.0            |
| Software version number                                                                                                                                                               |   | 25.4.3011.2113 |
| Have input sources been checked?                                                                                                                                                      |   | Yes            |
| Do the inputs to the software match the design documentation?                                                                                                                         |   | Yes            |
| Have critical components been checked?                                                                                                                                                |   | Yes            |
| Has documentation of any additional checks deemed to be warranted been included?                                                                                                      |   | Yes            |
| Certifier Name                                                                                                                                                                        |   | Ashley         |
| Certifier Number                                                                                                                                                                      |   | 123456         |
| List any major assumptions and provide comments on them (e.g. internal walls as supports, special hold down requirements, top chord restraints, overhang support, special loads, etc) | - |                |

Figure 17 - Engineering Environmental output

The software generates two main outputs. The first one, called environment details, displays the project details and whether it is for self-certification or not. It further describes the building information, site details and the applied loads. The figures below (Figures 31to 36) show screenshots of the Environment output.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                     |                 |        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------|-----------------|--------|--|--|
| <br><b>SCOTSDALE</b><br>THE TRUSTED STEEL-FRAMING PARTNER<br>Version 25.4.3011.2113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Name | MODEL 1                                             | Project No.     | MOD 1  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Address      |                                                     |                 |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Company      | SCS                                                 |                 |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detailer     | Ashley                                              | Certificate No. | 123456 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference    | Model 1 - Unified Environments (Self Certification) |                 |        |  |  |
| <b>Disclaimer</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |                 |        |  |  |
| Scottsdale Truss Self-Certification (Scottsdale Certification) assists skilled building design professionals certify truss designs created using Scottsteel. Scottsdale Certification is not a substitute for professional judgement or independent enquiry, analysis, review, testing, calculations or any other engineering process. It is the responsibility of the designer to verify the design and to take all reasonable care in the preparation of the design. Scottsdale Certification is not a substitute for professional judgement or independent enquiry, analysis, review, testing, calculations or any other engineering process. It is the responsibility of the designer to verify the design and to take all reasonable care in the preparation of the design. |              |                                                     |                 |        |  |  |
| <b>SELF CERTIFIED FOR TRUSSES ONLY</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                     |                 |        |  |  |

Figure 18 - The project details

| BUILDING DATA                            |                                |
|------------------------------------------|--------------------------------|
| country code                             | AU                             |
| wind code                                | AS/NZS 1170.2-2021 and AS 4055 |
| building use (code)                      | A                              |
| importance level                         | 2                              |
| annual prob. of exceedence - wind, (1/x) | 500                            |
| annual prob. of exceedence - snow, (1/x) | 150                            |
| annual prob. of exceedence - EQ, (1/x)   | 500                            |
| building length, (mm)                    | 25480                          |
| building width, (mm)                     | 8270                           |
| roof type                                | Hip                            |
| max. roof pitch, (deg)                   | 15.00                          |
| min roof pitch, (deg)                    | 15.00                          |
| roof height, (mm)                        | 6500                           |
| modular build                            | False                          |
| number of stories                        | 2                              |
| is building enclosed                     | Partly Enclosed                |
| roof material                            | Metal Sheet                    |

Figure 19 - Building information

| SITE DATA                      |     |
|--------------------------------|-----|
| elevation above sea level, (m) | 180 |
| wind region                    | N3  |

Figure 20 - Site details

Corresponding loads:

| GRAVITY LOADS       |                  |                  |                  |
|---------------------|------------------|------------------|------------------|
|                     | dead load, (kPa) | live load, (kPa) | point load, (kN) |
| roof                | 0.25             | 0.25             | 1.1              |
| ceiling under roof  | 0.2              | 0                | 1.1              |
| floor               | 0.9              | 1.5              | 1.8              |
| ceiling under floor | 0.2              | 0                | 1.1              |

Figure 21 - Gravity Loads

| WIND CALCULATION                 |       |
|----------------------------------|-------|
| service design wind speed (m/s)  | 32    |
| ultimate design wind speed (m/s) | 50    |
| service dynamic pressure (kPa)   | 0.614 |
| ultimate dynamic pressure (kPa)  | 1.5   |

Figure 22 - Wind loads

| SNOW CALCULATION               |     |
|--------------------------------|-----|
| region                         | N/A |
| elevation above sea level, (m) | 180 |
| ground snow load, (kPa)        | 0   |
| Exposure Reduction Coefficient | 1   |
| service snow load, (kPa)       | 0   |
| ultimate snow load, (kPa)      | 0   |

Figure 23 - Snow loads

The full report is attached below:



Model 1 - Unified  
Environments (Self Ce

The section below describes the truss PDF output generated by the software  
Truss passes the engineering

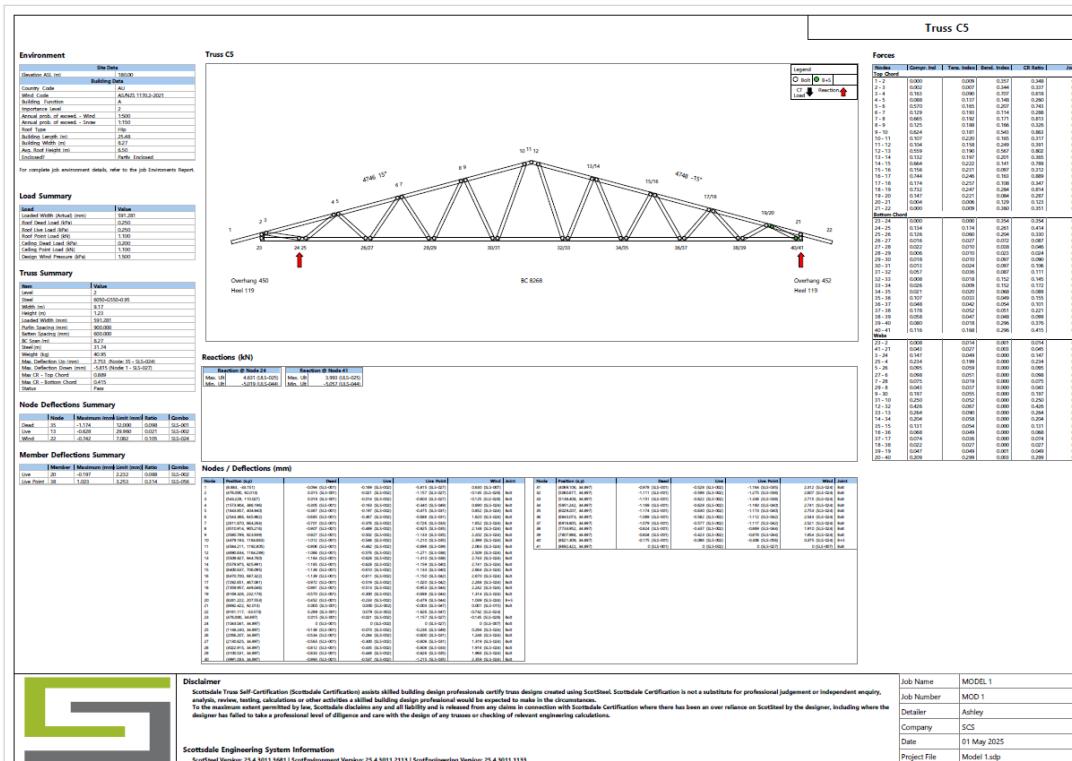



Figure 24 - Truss Passes

Truss fails the engineering – It displays the warning message.

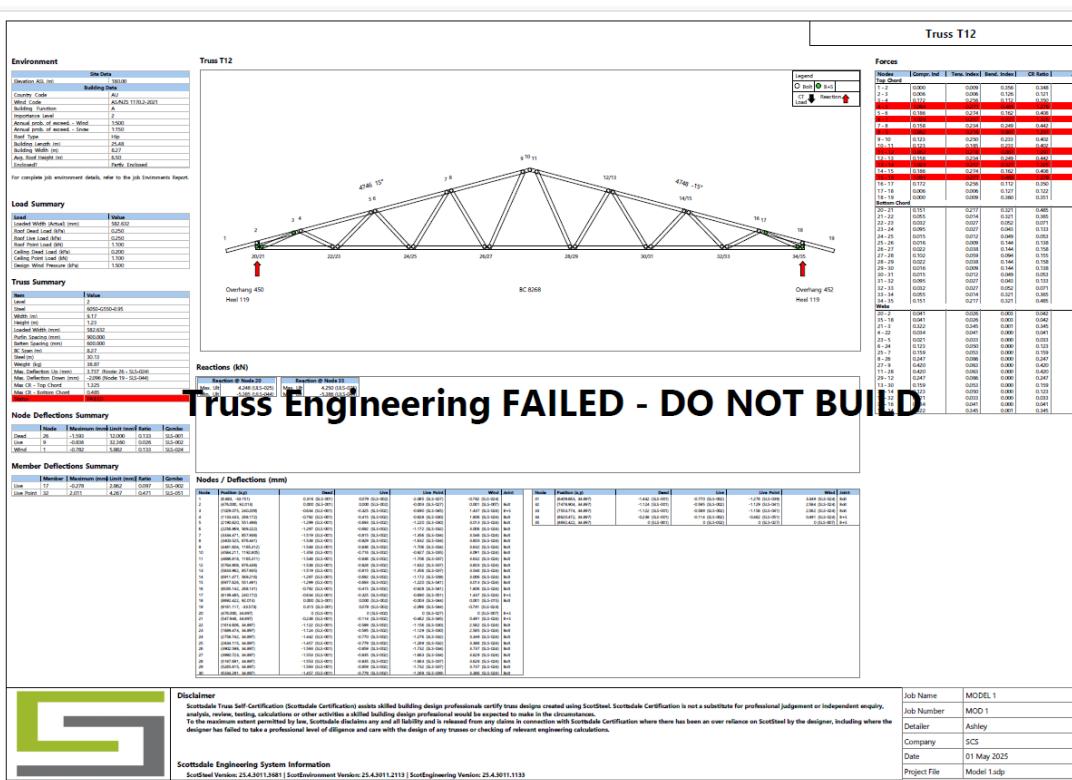



Figure 38 - Truss Fails

Once the truss analysis is complete, it generates the truss output report for each truss separately. This report gives both input and output details, showing the truss status as pass or fail. Refer to Figures 39 to 49 below.

The truss number is displayed, and number of plies as shown below.

### Truss T25 (3 ply)

Figure 39 - Truss designation

The truss is displayed with node numbers, relevant spans, and support positions.

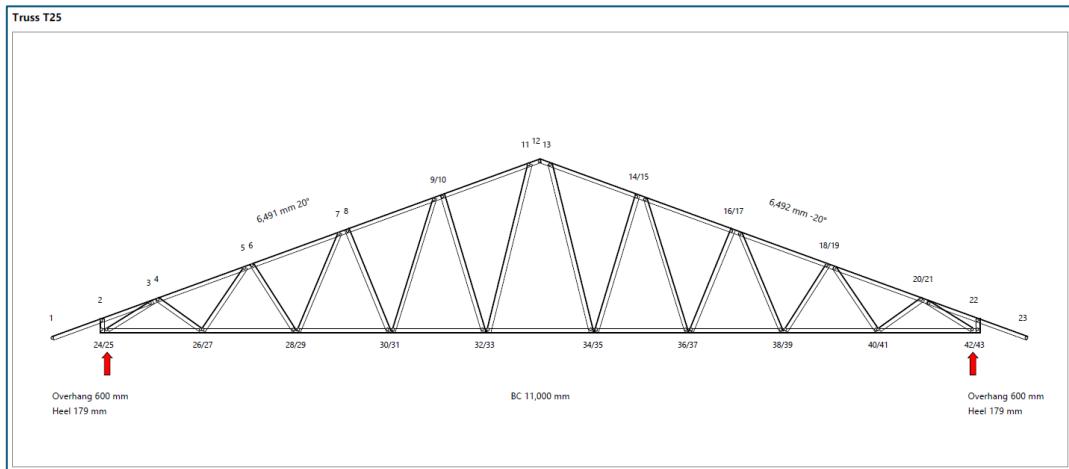



Figure 25 - Truss details

Environment displays the building and site details:

| Environment                    |                    |
|--------------------------------|--------------------|
| <b>Site Data</b>               |                    |
| Elevation ASL (m)              | 180.00             |
| <b>Building Data</b>           |                    |
| Country Code                   | AU                 |
| Wind Code                      | AS/NZS 1170.2-2021 |
| Building Function              | A                  |
| Importance Level               | 2                  |
| Annual prob. of exceed. - Wind | 1:500              |
| Annual prob. of exceed. - Snow | 1:150              |
| Roof Type                      | Hip                |
| Building Length (m)            | 25.48              |
| Building Width (m)             | 8.27               |
| Avg. Roof Height (m)           | 6.50               |
| Enclosed?                      | Partly Enclosed    |

For complete job environment details, refer to the job Environments Report.

Figure 26 - Building details

Load Summary displays the basic applied loads:

| Load Summary               |         |
|----------------------------|---------|
| Load                       | Value   |
| Loaded Width (Actual) (mm) | 591.281 |
| Roof Dead Load (kPa)       | 0.250   |
| Roof Live Load (kPa)       | 0.250   |
| Roof Point Load (kN)       | 1.100   |
| Ceiling Dead Load (kPa)    | 0.200   |
| Ceiling Point Load (kN)    | 1.100   |
| Design Wind Pressure (kPa) | 1.500   |

Figure 27 - Basic loads

The Truss Summary displays the truss details, including the pass/fail status, and shows the critical failure ratio and maximum deflection:

| Truss Summary             |                            |
|---------------------------|----------------------------|
| Item                      | Value                      |
| Level                     | 2                          |
| Steel                     | 6050-G550-0.95             |
| Width (m)                 | 9.17                       |
| Height (m)                | 1.23                       |
| Loaded Width (mm)         | 591.281                    |
| Purlin Spacing (mm)       | 900.000                    |
| Batten Spacing (mm)       | 600.000                    |
| BC Span (m)               | 8.27                       |
| Steel (m)                 | 31.74                      |
| Weight (kg)               | 40.95                      |
| Max. Deflection Up (mm)   | 2.753 (Node: 35 - SLS-024) |
| Max. Deflection Down (mm) | -5.815 (Node: 1 - SLS-027) |
| Max CR - Top Chord        | 0.889                      |
| Max CR - Bottom Chord     | 0.415                      |
| Status                    | Pass                       |

Figure 28 - Truss Summary (Pass)

| Truss Summary             |                             |
|---------------------------|-----------------------------|
| Item                      | Value                       |
| Level                     | 2                           |
| Steel                     | 6050-G550-0.95              |
| Width (m)                 | 9.17                        |
| Height (m)                | 1.23                        |
| Loaded Width (mm)         | 582.632                     |
| Purlin Spacing (mm)       | 900.000                     |
| Batten Spacing (mm)       | 600.000                     |
| BC Span (m)               | 8.27                        |
| Steel (m)                 | 30.13                       |
| Weight (kg)               | 38.87                       |
| Max. Deflection Up (mm)   | 3.737 (Node: 26 - SLS-024)  |
| Max. Deflection Down (mm) | -2.096 (Node: 19 - SLS-044) |
| Max CR - Top Chord        | 1.325                       |
| Max CR - Bottom Chord     | 0.485                       |
| Status                    | FAILED                      |

Figure 29 - Truss Summary (Fail)

If the truss fails, it displays the warning message in the middle of the report as shown below:



Figure 30 - Truss status

The user can see the maximum deflection and deflection limits due to different basic loads and the critical ratio:

| Node Deflections Summary |      |              |            |       |         |
|--------------------------|------|--------------|------------|-------|---------|
|                          | Node | Maximum (mm) | Limit (mm) | Ratio | Combo   |
| Dead                     | 35   | -1.174       | 12.000     | 0.098 | SLS-001 |
| Live                     | 13   | -0.628       | 29.960     | 0.021 | SLS-002 |
| Wind                     | 22   | -0.742       | 7.082      | 0.105 | SLS-024 |

| Member Deflections Summary |        |              |            |       |         |
|----------------------------|--------|--------------|------------|-------|---------|
|                            | Member | Maximum (mm) | Limit (mm) | Ratio | Combo   |
| Live                       | 20     | -0.197       | 2.232      | 0.088 | SLS-002 |
| Live Point                 | 38     | 1.023        | 3.253      | 0.314 | SLS-056 |

Figure 31 - Critical deflection

It also shows the deflection at each node due to different basic loads and displays the connection details of each joint. If the connection requires a bolt, bolt + spacer or screws, it will display as shown below.

| Nodes / Deflections (mm) |                      |                  |                  |                  |                  |       |  |
|--------------------------|----------------------|------------------|------------------|------------------|------------------|-------|--|
| Node                     | Position (x,y)       | Dead             | Live             | Live Point       | Wind             | Joint |  |
| 1                        | (8.883, -33.151)     | -0.094 (SLS-001) | -0.169 (SLS-002) | -5.815 (SLS-027) | 0.630 (SLS-007)  |       |  |
| 2                        | (476.000, 92.013)    | 0.015 (SLS-001)  | -0.021 (SLS-002) | -1.157 (SLS-027) | -0.145 (SLS-026) | Bolt  |  |
| 3                        | (543.229, 110.027)   | 0.016 (SLS-001)  | -0.014 (SLS-002) | -0.603 (SLS-027) | -0.125 (SLS-026) | Bolt  |  |
| 4                        | (1573.904, 386.196)  | -0.305 (SLS-001) | -0.163 (SLS-002) | -0.340 (SLS-049) | 0.690 (SLS-024)  | Bolt  |  |
| 5                        | (1643.857, 404.940)  | -0.367 (SLS-001) | -0.197 (SLS-002) | -0.475 (SLS-031) | 0.852 (SLS-024)  | Bolt  |  |
| 6                        | (2543.366, 645.962)  | -0.685 (SLS-001) | -0.367 (SLS-002) | -0.686 (SLS-031) | 1.620 (SLS-024)  | Bolt  |  |
| 7                        | (2611.670, 664.264)  | -0.701 (SLS-001) | -0.376 (SLS-002) | -0.726 (SLS-033) | 1.652 (SLS-024)  | Bolt  |  |
| 8                        | (3510.914, 905.216)  | -0.907 (SLS-001) | -0.489 (SLS-002) | -0.925 (SLS-035) | 2.148 (SLS-024)  | Bolt  |  |
| 9                        | (3580.789, 923.939)  | -0.927 (SLS-001) | -0.502 (SLS-002) | -1.133 (SLS-035) | 2.202 (SLS-024)  | Bolt  |  |
| 10                       | (4479.183, 1164.663) | -1.012 (SLS-001) | -0.548 (SLS-002) | -1.210 (SLS-035) | 2.399 (SLS-024)  | Bolt  |  |
| 11                       | (4584.211, 1192.805) | -0.906 (SLS-001) | -0.482 (SLS-002) | -0.696 (SLS-039) | 2.083 (SLS-024)  | Bolt  |  |
| 12                       | (4690.634, 1164.289) | -1.066 (SLS-001) | -0.576 (SLS-002) | -1.271 (SLS-038) | 2.509 (SLS-024)  | Bolt  |  |
| 13                       | (5509.927, 944.760)  | -1.164 (SLS-001) | -0.628 (SLS-002) | -1.310 (SLS-038) | 2.743 (SLS-024)  | Bolt  |  |
| 14                       | (5579.975, 925.991)  | -1.165 (SLS-001) | -0.628 (SLS-002) | -1.159 (SLS-040) | 2.741 (SLS-024)  | Bolt  |  |
| 15                       | (6400.637, 706.095)  | -1.138 (SLS-001) | -0.610 (SLS-002) | -1.133 (SLS-040) | 2.664 (SLS-024)  | Bolt  |  |
| 16                       | (6470.700, 687.322)  | -1.139 (SLS-001) | -0.611 (SLS-002) | -1.150 (SLS-042) | 2.670 (SLS-024)  | Bolt  |  |
| 17                       | (7292.651, 467.081)  | -0.972 (SLS-001) | -0.519 (SLS-002) | -1.020 (SLS-042) | 2.268 (SLS-024)  | Bolt  |  |
| 18                       | (7359.957, 449.046)  | -0.961 (SLS-001) | -0.513 (SLS-002) | -0.953 (SLS-044) | 2.242 (SLS-024)  | Bolt  |  |
| 19                       | (8169.326, 232.176)  | -0.570 (SLS-001) | -0.300 (SLS-002) | -0.698 (SLS-044) | 1.314 (SLS-024)  | Bolt  |  |
| 20                       | (8261.222, 207.553)  | -0.452 (SLS-001) | -0.233 (SLS-002) | -0.479 (SLS-044) | 1.039 (SLS-024)  | B+5   |  |
| 21                       | (8692.422, 92.013)   | 0.000 (SLS-001)  | 0.000 (SLS-002)  | -0.003 (SLS-047) | 0.001 (SLS-015)  | Bolt  |  |
| 22                       | (9161.117, -33.573)  | 0.298 (SLS-001)  | 0.079 (SLS-002)  | -1.826 (SLS-047) | -0.742 (SLS-024) |       |  |
| 23                       | (476.000, 34.897)    | 0.015 (SLS-001)  | -0.021 (SLS-002) | -1.157 (SLS-027) | -0.145 (SLS-026) | Bolt  |  |
| 24                       | (1043.041, 34.897)   | 0 (SLS-001)      | 0 (SLS-002)      | 0 (SLS-027)      | 0 (SLS-007)      | Bolt  |  |
| 25                       | (1148.240, 34.897)   | -0.138 (SLS-001) | -0.073 (SLS-002) | -0.236 (SLS-049) | 0.294 (SLS-024)  | Bolt  |  |
| 26                       | (2056.207, 34.897)   | -0.534 (SLS-001) | -0.284 (SLS-002) | -0.600 (SLS-031) | 1.246 (SLS-024)  | Bolt  |  |
| 27                       | (2130.625, 34.897)   | -0.563 (SLS-001) | -0.300 (SLS-002) | -0.608 (SLS-031) | 1.319 (SLS-024)  | Bolt  |  |
| 28                       | (3022.915, 34.897)   | -0.812 (SLS-001) | -0.435 (SLS-002) | -0.808 (SLS-033) | 1.916 (SLS-024)  | Bolt  |  |
| 29                       | (3100.531, 34.897)   | -0.833 (SLS-001) | -0.448 (SLS-002) | -0.826 (SLS-035) | 1.966 (SLS-024)  | Bolt  |  |
| 30                       | (3991.033, 34.897)   | -0.993 (SLS-001) | -0.537 (SLS-002) | -1.215 (SLS-035) | 2.359 (SLS-024)  | Bolt  |  |

Figure 32 - Node deflection and connections

The report gives the maximum reaction and the maximum uplift at the support points:

| Reactions (kN)     |                  |                    |                  |
|--------------------|------------------|--------------------|------------------|
| Reaction @ Node 24 |                  | Reaction @ Node 41 |                  |
| Max. Ult           | 4.631 (ULS-025)  | Max. Ult           | 3.993 (ULS-025)  |
| Min. Ult           | -5.019 (ULS-044) | Min. Ult           | -5.057 (ULS-044) |

Figure 48 - Reactions

The user can see the critical ratio of compression, tension, bending and combined bending and axial for each truss member as shown below:

| Forces              |            |             |             |          |       |
|---------------------|------------|-------------|-------------|----------|-------|
| Nodes               | Compr. Ind | Tens. Index | Bend. Index | CR Ratio | Joint |
| <b>Top Chord</b>    |            |             |             |          |       |
| 1 - 2               | 0.000      | 0.009       | 0.357       | 0.348    | OK    |
| 2 - 3               | 0.002      | 0.007       | 0.344       | 0.337    | OK    |
| 3 - 4               | 0.163      | 0.090       | 0.707       | 0.618    | OK    |
| 4 - 5               | 0.088      | 0.137       | 0.148       | 0.260    | OK    |
| 5 - 6               | 0.570      | 0.165       | 0.207       | 0.743    | OK    |
| 6 - 7               | 0.129      | 0.193       | 0.114       | 0.288    | OK    |
| 7 - 8               | 0.665      | 0.192       | 0.171       | 0.813    | OK    |
| 8 - 9               | 0.125      | 0.188       | 0.166       | 0.326    | OK    |
| 9 - 10              | 0.624      | 0.181       | 0.543       | 0.863    | OK    |
| 10 - 11             | 0.107      | 0.220       | 0.165       | 0.317    | OK    |
| 11 - 12             | 0.104      | 0.158       | 0.249       | 0.391    | OK    |
| 12 - 13             | 0.559      | 0.190       | 0.567       | 0.802    | OK    |
| 13 - 14             | 0.132      | 0.197       | 0.201       | 0.365    | OK    |
| 14 - 15             | 0.664      | 0.222       | 0.141       | 0.789    | OK    |
| 15 - 16             | 0.156      | 0.231       | 0.097       | 0.312    | OK    |
| 16 - 17             | 0.744      | 0.246       | 0.163       | 0.889    | OK    |
| 17 - 18             | 0.174      | 0.257       | 0.108       | 0.347    | OK    |
| 18 - 19             | 0.732      | 0.247       | 0.284       | 0.814    | OK    |
| 19 - 20             | 0.147      | 0.221       | 0.084       | 0.287    | OK    |
| 20 - 21             | 0.004      | 0.006       | 0.129       | 0.123    | OK    |
| 21 - 22             | 0.000      | 0.009       | 0.360       | 0.351    | OK    |
| <b>Bottom Chord</b> |            |             |             |          |       |
| 23 - 24             | 0.000      | 0.000       | 0.354       | 0.354    | OK    |
| 24 - 25             | 0.134      | 0.174       | 0.261       | 0.414    | OK    |
| 25 - 26             | 0.126      | 0.060       | 0.204       | 0.330    | OK    |
| 26 - 27             | 0.016      | 0.027       | 0.072       | 0.087    | OK    |
| 27 - 28             | 0.022      | 0.010       | 0.038       | 0.046    | OK    |
| 28 - 29             | 0.006      | 0.010       | 0.023       | 0.024    | OK    |
| 29 - 30             | 0.018      | 0.010       | 0.097       | 0.090    | OK    |
| 30 - 31             | 0.013      | 0.024       | 0.097       | 0.106    | OK    |
| 31 - 32             | 0.057      | 0.036       | 0.087       | 0.111    | OK    |
| 32 - 33             | 0.008      | 0.018       | 0.152       | 0.145    | OK    |
| 33 - 34             | 0.026      | 0.009       | 0.152       | 0.172    | OK    |
| 34 - 35             | 0.021      | 0.020       | 0.068       | 0.089    | OK    |
| 35 - 36             | 0.107      | 0.033       | 0.049       | 0.155    | OK    |
| 36 - 37             | 0.048      | 0.042       | 0.054       | 0.101    | OK    |
| 37 - 38             | 0.178      | 0.052       | 0.051       | 0.221    | OK    |
| 38 - 39             | 0.058      | 0.047       | 0.048       | 0.099    | OK    |
| 39 - 40             | 0.080      | 0.018       | 0.296       | 0.376    | OK    |
| 40 - 41             | 0.116      | 0.168       | 0.296       | 0.415    | OK    |
| <b>Webs</b>         |            |             |             |          |       |
| 23 - 2              | 0.008      | 0.014       | 0.001       | 0.014    | OK    |
| 41 - 21             | 0.043      | 0.027       | 0.003       | 0.045    | OK    |
| 3 - 24              | 0.147      | 0.049       | 0.000       | 0.147    | OK    |
| 25 - 4              | 0.234      | 0.199       | 0.000       | 0.234    | OK    |
| 5 - 26              | 0.095      | 0.059       | 0.000       | 0.095    | OK    |
| 27 - 6              | 0.098      | 0.051       | 0.000       | 0.098    | OK    |
| 7 - 28              | 0.075      | 0.019       | 0.000       | 0.075    | OK    |
| 29 - 8              | 0.043      | 0.037       | 0.000       | 0.043    | OK    |
| 9 - 30              | 0.197      | 0.055       | 0.000       | 0.197    | OK    |
| 31 - 10             | 0.250      | 0.052       | 0.000       | 0.250    | OK    |
| 12 - 32             | 0.426      | 0.067       | 0.000       | 0.426    | OK    |
| 33 - 13             | 0.264      | 0.090       | 0.000       | 0.264    | OK    |
| 14 - 34             | 0.204      | 0.058       | 0.000       | 0.204    | OK    |
| 35 - 15             | 0.131      | 0.054       | 0.000       | 0.131    | OK    |
| 16 - 36             | 0.068      | 0.049       | 0.000       | 0.068    | OK    |
| 37 - 17             | 0.074      | 0.036       | 0.000       | 0.074    | OK    |
| 18 - 38             | 0.022      | 0.027       | 0.000       | 0.027    | OK    |
| 39 - 19             | 0.047      | 0.049       | 0.001       | 0.049    | OK    |
| 20 - 40             | 0.209      | 0.299       | 0.003       | 0.299    | OK    |

Figure 49 - Induced forces

If the truss fails, the failure ratios are highlighted as shown below:

| Forces              |              |              |              |              |           |
|---------------------|--------------|--------------|--------------|--------------|-----------|
| Nodes               | Compr. Ind   | Tens. Index  | Bend. Index  | CR Ratio     | Joint     |
| <b>Top Chord</b>    |              |              |              |              |           |
| 1 - 2               | 0.000        | 0.009        | 0.356        | 0.348        | OK        |
| 2 - 3               | 0.006        | 0.006        | 0.126        | 0.121        | OK        |
| 3 - 4               | 0.172        | 0.256        | 0.112        | 0.350        | OK        |
| <b>4 - 5</b>        | <b>1.094</b> | <b>0.271</b> | <b>0.465</b> | <b>1.279</b> | <b>OK</b> |
| 5 - 6               | 0.186        | 0.274        | 0.162        | 0.408        | OK        |
| 6 - 7               | 1.028        | 0.257        | 0.321        | 1.325        | OK        |
| 7 - 8               | 0.158        | 0.234        | 0.249        | 0.442        | OK        |
| 8 - 9               | 0.862        | 0.218        | 0.861        | 1.297        | OK        |
| 9 - 10              | 0.123        | 0.250        | 0.233        | 0.402        | OK        |
| 10 - 11             | 0.123        | 0.185        | 0.233        | 0.402        | OK        |
| <b>11 - 12</b>      | <b>0.862</b> | <b>0.218</b> | <b>0.861</b> | <b>1.297</b> | <b>OK</b> |
| 12 - 13             | 0.158        | 0.234        | 0.249        | 0.442        | OK        |
| <b>13 - 14</b>      | <b>1.028</b> | <b>0.257</b> | <b>0.321</b> | <b>1.325</b> | <b>OK</b> |
| 14 - 15             | 0.186        | 0.274        | 0.162        | 0.408        | OK        |
| <b>15 - 16</b>      | <b>1.094</b> | <b>0.271</b> | <b>0.465</b> | <b>1.279</b> | <b>OK</b> |
| 16 - 17             | 0.172        | 0.256        | 0.112        | 0.350        | OK        |
| 17 - 18             | 0.006        | 0.006        | 0.127        | 0.122        | OK        |
| 18 - 19             | 0.000        | 0.009        | 0.360        | 0.351        | OK        |
| <b>Bottom Chord</b> |              |              |              |              |           |
| 20 - 21             | 0.151        | 0.217        | 0.321        | 0.485        | OK        |
| 21 - 22             | 0.055        | 0.014        | 0.321        | 0.365        | OK        |
| 22 - 23             | 0.032        | 0.027        | 0.052        | 0.071        | OK        |
| 23 - 24             | 0.095        | 0.027        | 0.043        | 0.133        | OK        |
| 24 - 25             | 0.015        | 0.012        | 0.049        | 0.053        | OK        |
| 25 - 26             | 0.016        | 0.009        | 0.144        | 0.138        | OK        |
| 26 - 27             | 0.022        | 0.038        | 0.144        | 0.158        | OK        |
| 27 - 28             | 0.102        | 0.059        | 0.094        | 0.155        | OK        |
| 28 - 29             | 0.022        | 0.038        | 0.144        | 0.158        | OK        |
| 29 - 30             | 0.016        | 0.009        | 0.144        | 0.138        | OK        |
| 30 - 31             | 0.015        | 0.012        | 0.049        | 0.053        | OK        |
| 31 - 32             | 0.095        | 0.027        | 0.043        | 0.133        | OK        |
| 32 - 33             | 0.032        | 0.027        | 0.052        | 0.071        | OK        |
| 33 - 34             | 0.055        | 0.014        | 0.321        | 0.365        | OK        |
| 34 - 35             | 0.151        | 0.217        | 0.321        | 0.485        | OK        |
| <b>Webs</b>         |              |              |              |              |           |
| 20 - 2              | 0.041        | 0.026        | 0.003        | 0.042        | OK        |
| 35 - 18             | 0.041        | 0.026        | 0.003        | 0.042        | OK        |
| 21 - 3              | 0.322        | 0.345        | 0.001        | 0.345        | OK        |
| 4 - 22              | 0.034        | 0.041        | 0.000        | 0.041        | OK        |
| 23 - 5              | 0.021        | 0.033        | 0.000        | 0.033        | OK        |
| 6 - 24              | 0.123        | 0.050        | 0.000        | 0.123        | OK        |
| 25 - 7              | 0.159        | 0.053        | 0.000        | 0.159        | OK        |
| 8 - 26              | 0.247        | 0.086        | 0.000        | 0.247        | OK        |
| 27 - 9              | 0.420        | 0.063        | 0.000        | 0.420        | OK        |
| 11 - 28             | 0.420        | 0.063        | 0.000        | 0.420        | OK        |
| 29 - 12             | 0.247        | 0.086        | 0.000        | 0.247        | OK        |
| 13 - 30             | 0.159        | 0.053        | 0.000        | 0.159        | OK        |
| <b>31 - 14</b>      | <b>0.123</b> | <b>0.050</b> | <b>0.000</b> | <b>0.123</b> | <b>OK</b> |
| <b>31 - 32</b>      | <b>0.21</b>  | <b>0.033</b> | <b>0.000</b> | <b>0.033</b> | <b>OK</b> |
| <b>31 - 16</b>      | <b>0.34</b>  | <b>0.041</b> | <b>0.000</b> | <b>0.041</b> | <b>OK</b> |
| <b>34 - 32</b>      | <b>0.22</b>  | <b>0.345</b> | <b>0.001</b> | <b>0.345</b> | <b>OK</b> |

Figure 33 - Induced forces of failed truss

The attachments below show the truss with a pass and a failed status. This includes the tie-down details, too.



Model 1 - Truss  
C5.pdf



Model 1 - Truss  
T12.pdf

# Software Quality Assurance

# Software QA requirements

Every build of the software is given a distinct version number that is controlled by the source control versioning of each change made. All production releases of the software come with release documentation that lists all changes made in the current version since the previous version. Every change is linked to a software bug or enhancement request in our workflow system.

# Engineering QA

Structural analysis is checked using independent Space Gass software.

Space Gass software is used to check the Scottsdale software. The models were created in Space Gass independently and apply all the loads and load combinations. The induced forces (bending, compression, tension, and shear) and deflection results are then compared with Scottsdale Software.

Screenshots of Space Gass analysis and comparison results are shown below. Refer to Figures 51 and 52 and, Table 5 below.

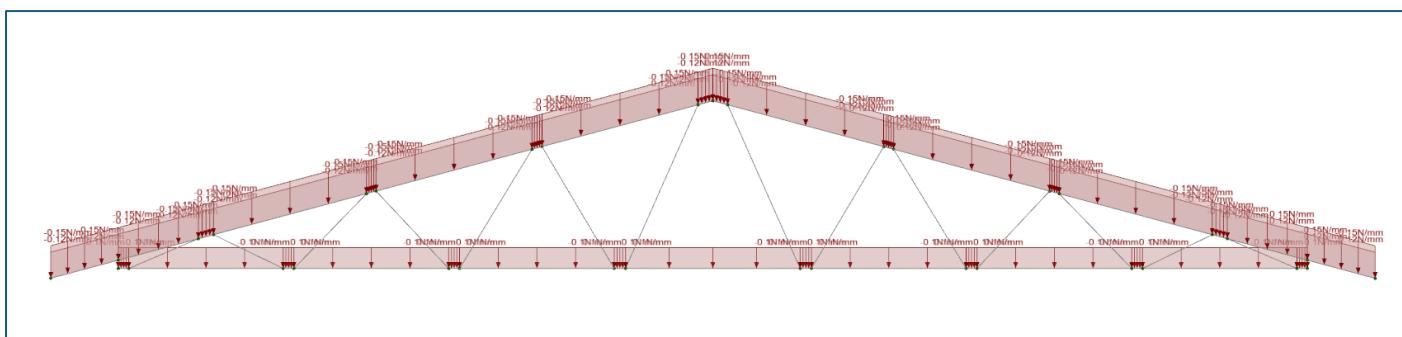



Figure 34 - Applied loads from Space Gass

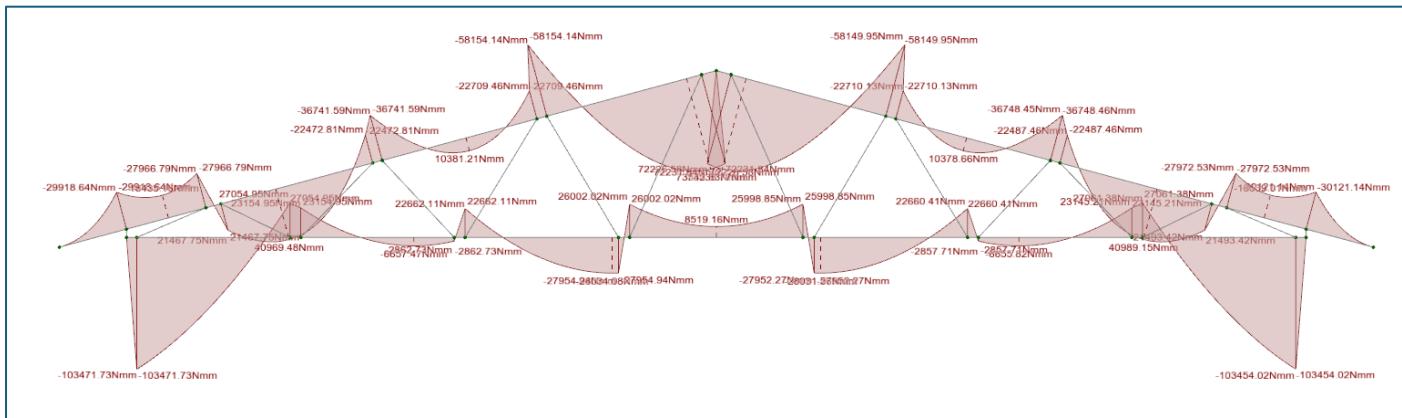



Figure 35 - Induced forces from Space Gass

| Load Case/Combination Title | Member number | Station | Location (mm) | SCS Analyser |             |              | Space Gass |           |             | SCS/Space Gass |         |           |
|-----------------------------|---------------|---------|---------------|--------------|-------------|--------------|------------|-----------|-------------|----------------|---------|-----------|
|                             |               |         |               | Axial (N)    | Shear (N)   | Moment (Nmm) | Axial (N)  | Shear (N) | Moment (Nm) | % Axial        | % Shear | % Bending |
| ULS-002                     | 6             | 1       | 0.00          | 3857.745     | 155.2882341 | -36741.58392 | 3857.4     | 155.29    | -36741      | 100.01%        | 100.00% | 100.00%   |
|                             |               | 2       | 278.88        | 3838.626     | 83.9337     | -3384.7180   | 3838.63    | 83.93     | -3384       | 100.00%        | 100.00% | 100.02%   |
|                             |               | 3       | 557.76        | 3819.506     | 12.5791     | 10072.9255   | 3819.51    | 12.58     | 10072       | 100.00%        | 99.99%  | 100.01%   |
|                             |               | 4       | 836.63        | 3800.387     | -58.7755    | 3631.3467    | 3800.39    | -58.77    | 3631        | 100.00%        | 100.01% | 100.01%   |
|                             |               | 5       | 1115.51       | 3781.267     | -130.1301   | -22709.4545  | 3781.27    | -130.13   | -22709      | 100.00%        | 100.00% | 100.00%   |
|                             | 24            | 1       | 0.00          | 13.162       | -98.6600    | 22662.1065   | 13.16      | -98.66    | 22662       | 100.02%        | 100.00% | 100.00%   |
|                             |               | 2       | 267.12        | 13.162       | -73.0164    | -267.0645    | 13.16      | -73.02    | -267        | 100.02%        | 100.00% | 100.02%   |
|                             |               | 3       | 534.24        | 13.162       | -47.3728    | -16346.2963  | 13.16      | -47.37    | -16346      | 100.02%        | 100.01% | 100.00%   |
|                             |               | 4       | 801.36        | 13.162       | -21.7292    | -25575.5889  | 13.16      | -21.73    | -25575      | 100.02%        | 100.00% | 100.00%   |
|                             |               | 5       | 1068.48       | 13.162       | 3.9144      | -27954.9423  | 13.16      | 3.91      | -27954      | 100.02%        | 100.11% | 100.00%   |
|                             | 41            | 1       | 0.00          | 794.063      | 0.0000      | 0.0000       | 794.06     |           |             | 100.00%        |         |           |
|                             |               | 2       | 244.60        | 794.063      | 0.0000      | 0.0000       | 794.06     |           |             | 100.00%        |         |           |
|                             |               | 3       | 489.20        | 794.063      | 0.0000      | 0.0000       | 794.06     |           |             | 100.00%        |         |           |
|                             |               | 4       | 733.80        | 794.063      | 0.0000      | 0.0000       | 794.06     |           |             | 100.00%        |         |           |
|                             |               | 5       | 978.40        | 794.063      | 0.0000      | 0.0000       | 794.06     |           |             | 100.00%        |         |           |

Table 5 - Comparison between Space Gass and Scottsdale Truss Software (Truss T6)

## Member Designs

Member designs are checked using independent Cold-steel and CFS software.

The critical ratio given by the SCS software was checked against the Cold-formed steel software (CFS). The results are as shown below.

In the example below, it gives the critical ratios for all the failure types. Refer Figure 53 below.

| Member Critical Summary                                                    |                |                        |
|----------------------------------------------------------------------------|----------------|------------------------|
| <b>Compression</b>                                                         | <b>Tension</b> | <b>Bending</b>         |
| Member                                                                     | Member         | Member                 |
| Section Name                                                               | Section Name   | Section Name           |
| Unbraced member length restricting distortional buckling (L <sub>m</sub> ) | 6050-G550-0.95 | 6050-G550-0.95         |
| Unbraced member length about x-axis (L <sub>x</sub> )                      | 1094.688 mm    | 523.103 mm             |
| Unbraced member length about y-axis (L <sub>y</sub> )                      | 985.219 mm     | 523.103 mm             |
| Unbraced member length for twisting (L <sub>t</sub> )                      | 900.000 mm     | 523.103 mm             |
| Man load alternative applied                                               | 900.000 mm     | 470.792 mm             |
| Load Combination                                                           | Yes            | No                     |
| Station                                                                    | ULS-025        | ULS-044                |
| Design axial compression force (N*)                                        | 7.256 kN       | 1                      |
| <b>Member capacity compression check - Sec. 3.4.1 (b)</b>                  |                | -9.099 kN              |
| Nominal member capacity (N <sub>c</sub> )                                  | 11.364 kN      | 42.649 kN              |
| Reduction factor ( $\phi_c$ )                                              | 0.850          | 0.900                  |
| Factored capacity ( $\phi N_c$ )                                           | 9.659 kN       | 38.384 kN              |
| Efficiency ratio                                                           | 0.751          | 0.237                  |
|                                                                            |                |                        |
| <b>Shear</b>                                                               | <b>Bearing</b> | <b>Combined Forces</b> |
| Member                                                                     | Member         | Member                 |
| Section Name                                                               | Section Name   | Section Name           |
| Unbraced member length restricting distortional buckling (L <sub>m</sub> ) | 6050-G550-0.95 | 6050-G550-0.95         |
| Unbraced member length about x-axis (L <sub>x</sub> )                      | 71.948 mm      | 483.595 mm             |
| Unbraced member length about y-axis (L <sub>y</sub> )                      | 64.753 mm      | 435.236 mm             |
| Unbraced member length for twisting (L <sub>t</sub> )                      | 79.142 mm      | 531.955 mm             |
| Man load alternative applied                                               | 64.753 mm      | 435.236 mm             |
| Load Combination                                                           | Yes            | No                     |
| Station                                                                    | ULS-044        | ULS-047                |
| Design shear force x-axis (V <sub>x</sub> )                                | 0.000 kN       | 4                      |
| Design shear force y-axis (V <sub>y</sub> )                                | 3.286 kN       | -1.650 kN              |
| <b>Shear capacity of webs without holes - Sec. 3.3.4.1 (y-axis)</b>        |                | 19.050 mm              |
| Nominal shear capacity (V <sub>v</sub> )                                   | 27.998 kN      | 0.131                  |
| Reduction factor ( $\phi_v$ )                                              | 0.900          |                        |
| Factored shear capacity ( $\phi V_v$ )                                     | 25.198 kN      |                        |
| Efficiency ratio                                                           | 0.130          |                        |
|                                                                            |                |                        |

Figure 36 - SCS truss analysis results

The effective lengths, sections and member forces are entered in the CFS software and checked as shown in Figure 54 and 55 below.

Figure 54 displays the critical factor under compression

### Compression

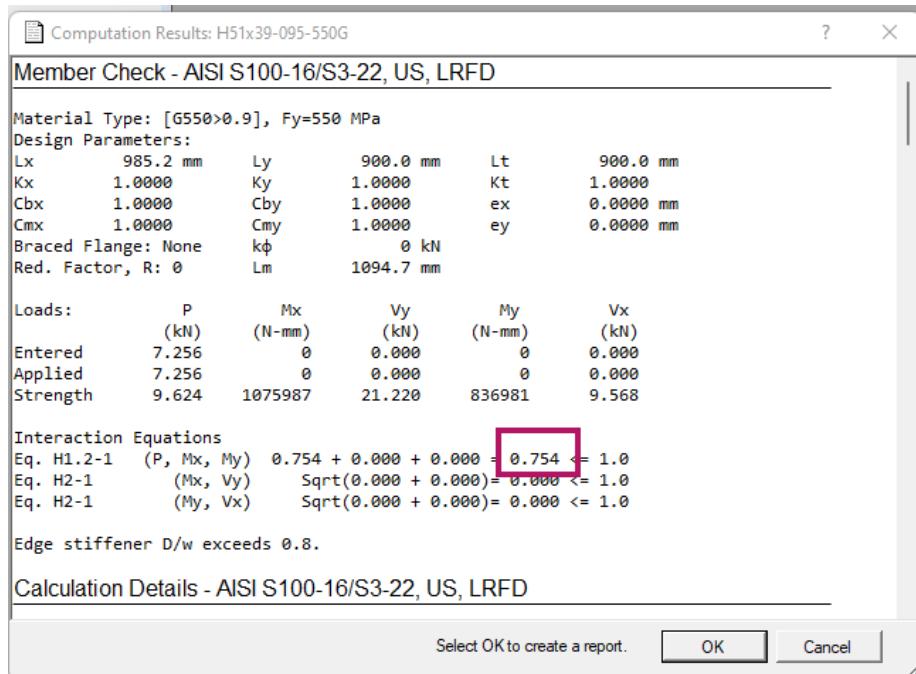



Figure 374 – Critical ratio for compression

Figure 55 displays the critical factor under bending

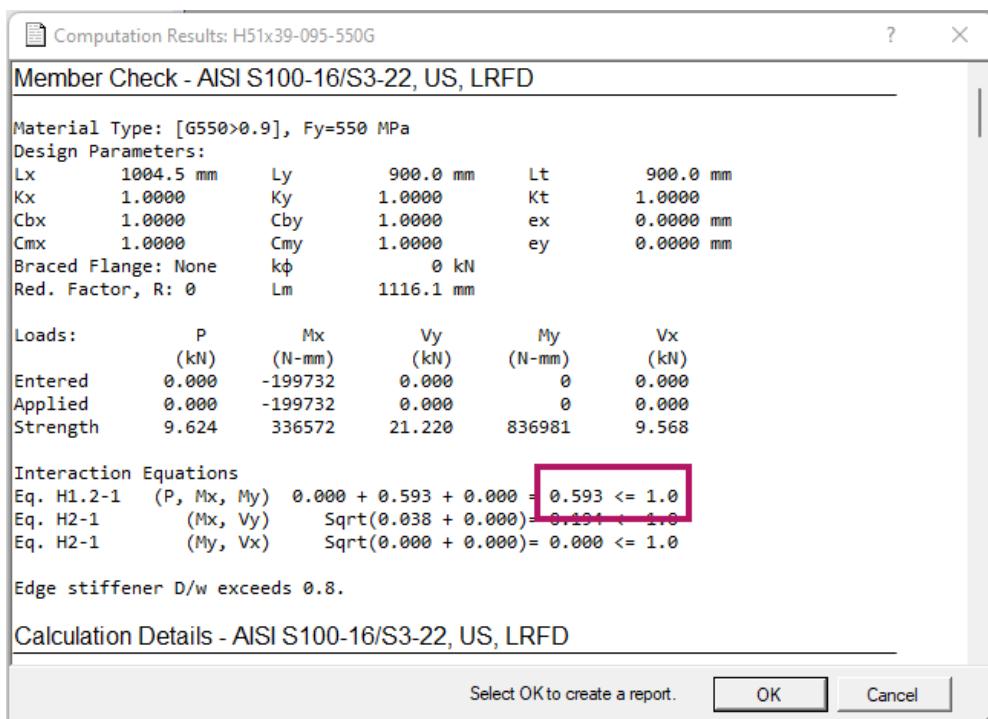



Figure 386 – Critical ratio for bending

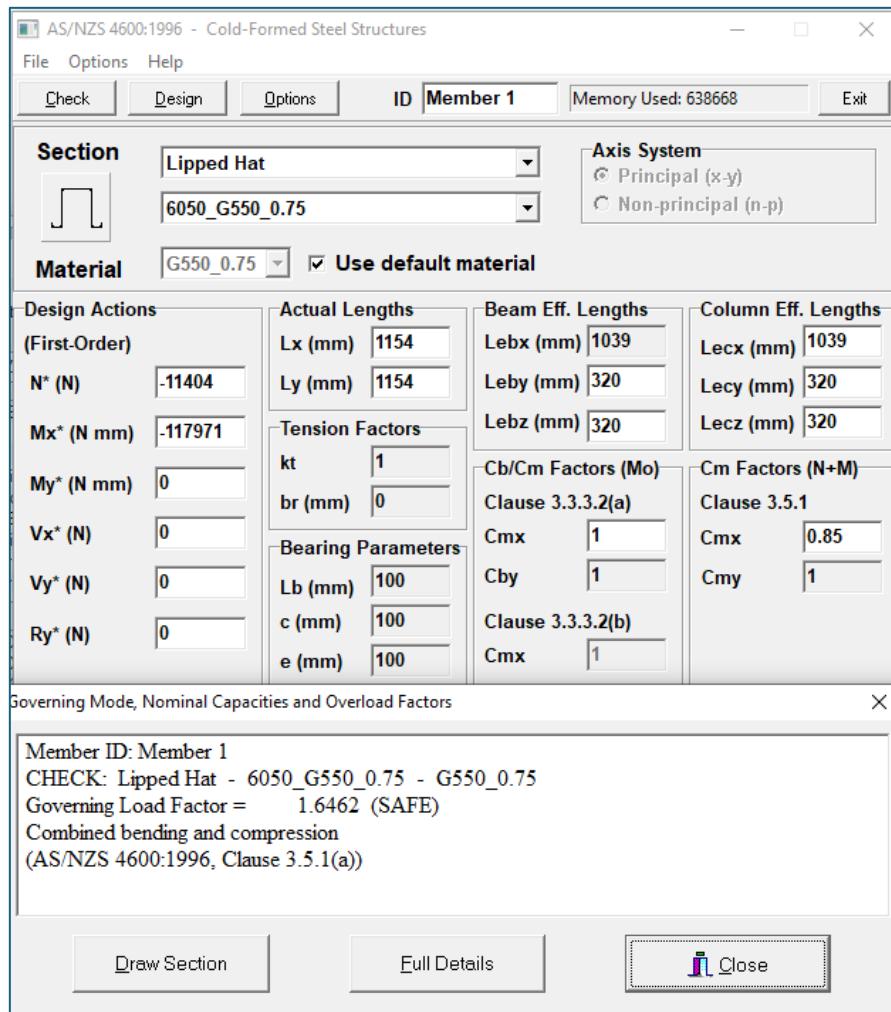
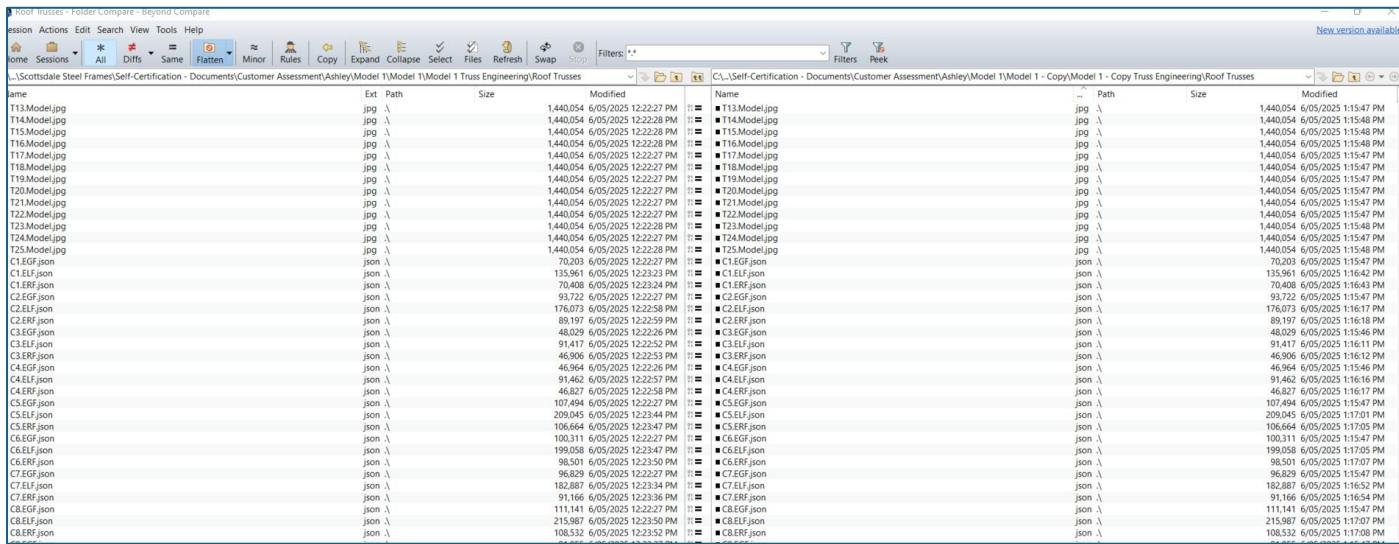




Figure 39 - Screenshot of Cold Steel software

The critical ratio from the ColdSteel software is 1.6462, which in SCS software is  $1/1.6462 = 0.607$

Both critical ratios calculated from SCS design software and Cold Steel software are the same.

A commercial software package “Beyond Compare 4” was used to compare the results between the new version with the released version. Beyond Compare 4 is a software which can compare the content of two different files. Every time before the new version is released, this software is used to compare the overall loadings and final results between two versions. Figure 57 below shows the screenshot of comparison of two different versions. It can display the same and different results:



*Figure 40 - Screenshot from a Beyond Compare 4*

The above screen shows that the geometry, loads and forces of all the trusses are the same in two different versions of the software.